Suppr超能文献

通过弱监督深度卷积网络对谱域光学相干断层扫描图像中的旁中心急性中黄斑病变进行分割。

Segmentation of paracentral acute middle maculopathy lesions in spectral-domain optical coherence tomography images through weakly supervised deep convolutional networks.

机构信息

School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, China.

School of Information Engineering, Nanchang Institute of Technology, Nanchang, China.

出版信息

Comput Methods Programs Biomed. 2023 Oct;240:107632. doi: 10.1016/j.cmpb.2023.107632. Epub 2023 May 29.

Abstract

BACKGROUND AND OBJECTIVES

Spectral-domain optical coherence tomography (SD-OCT) is a valuable tool for non-invasive imaging of the retina, allowing the discovery and visualization of localized lesions, the presence of which is associated with eye diseases. The present study introduces X-Net, a weakly supervised deep-learning framework for automated segmentation of paracentral acute middle maculopathy (PAMM) lesions in retinal SD-OCT images. Despite recent advances in the development of automatic methods for clinical analysis of OCT scans, there remains a scarcity of studies focusing on the automated detection of small retinal focal lesions. Additionally, most existing solutions depend on supervised learning, which can be time-consuming and require extensive image labeling, whereas X-Net offers a solution to these challenges. As far as we can determine, no prior study has addressed the segmentation of PAMM lesions in SD-OCT images.

METHODS

This study leverages 133 SD-OCT retinal images, each containing instances of paracentral acute middle maculopathy lesions. A team of eye experts annotated the PAMM lesions in these images using bounding boxes. Then, labeled data were used to train a U-Net that performs pre-segmentation, producing region labels of pixel-level accuracy. To attain a highly-accurate final segmentation, we introduced X-Net, a novel neural network made up of a master and a slave U-Net. During training, it takes the expert annotated, and pixel-level pre-segment annotated images and employs sophisticated strategies to ensure the highest segmentation accuracy.

RESULTS

The proposed method was rigorously evaluated on clinical retinal images excluded from training and achieved an accuracy of 99% with a high level of similarity between the automatic segmentation and expert annotation, as demonstrated by a mean Intersection-over-Union of 0.8. Alternative methods were tested on the same data. Single-stage neural networks proved insufficient for achieving satisfactory results, confirming that more advanced solutions, such as the proposed method, are necessary. We also found that X-Net using Attention U-net for both the pre-segmentation and X-Net arms for the final segmentation shows comparable performance to the proposed method, suggesting that the proposed approach remains a viable solution even when implemented with variants of the classic U-Net.

CONCLUSIONS

The proposed method exhibits reasonably high performance, validated through quantitative and qualitative evaluations. Medical eye specialists have also verified its validity and accuracy. Thus, it could be a viable tool in the clinical assessment of the retina. Additionally, the demonstrated approach for annotating the training set has proven to be effective in reducing the expert workload.

摘要

背景与目的

光谱域光学相干断层扫描(SD-OCT)是一种用于视网膜非侵入性成像的有价值的工具,可以发现和可视化局部病变,这些病变的存在与眼部疾病有关。本研究介绍了 X-Net,这是一种用于自动分割视网膜 SD-OCT 图像中旁中心急性中黄斑病变(PAMM)病变的弱监督深度学习框架。尽管最近在开发用于 OCT 扫描临床分析的自动方法方面取得了进展,但仍然缺乏专注于自动检测小视网膜局灶性病变的研究。此外,大多数现有的解决方案都依赖于监督学习,这可能既耗时又需要大量的图像标记,而 X-Net 提供了一种解决这些挑战的方法。据我们所知,以前没有研究涉及到 SD-OCT 图像中 PAMM 病变的分割。

方法

本研究利用了 133 张 SD-OCT 视网膜图像,每张图像都包含旁中心急性中黄斑病变的实例。一组眼科专家使用边界框对这些图像中的 PAMM 病变进行了注释。然后,使用标记数据对 U-Net 进行了预分割训练,生成了像素级精度的区域标签。为了获得高度精确的最终分割,我们引入了 X-Net,这是一种由主 U-Net 和从 U-Net 组成的新型神经网络。在训练过程中,它采用专家注释和像素级预分割注释图像,并采用复杂的策略来确保最高的分割精度。

结果

该方法在排除训练的临床视网膜图像上进行了严格评估,实现了 99%的准确率,自动分割与专家注释之间具有高度相似性,平均交并比为 0.8。还在相同的数据上测试了其他方法。单阶段神经网络不足以取得令人满意的结果,这证实了更先进的解决方案,如所提出的方法,是必要的。我们还发现,使用注意力 U-Net 进行 X-Net 的预分割和 X-Net 臂进行最终分割的 X-Net 表现出与所提出的方法相当的性能,这表明即使使用经典 U-Net 的变体实施,所提出的方法仍然是一种可行的解决方案。

结论

该方法通过定量和定性评估验证了其具有相当高的性能。医学眼科专家也验证了其有效性和准确性。因此,它可以成为视网膜临床评估的一种可行工具。此外,所展示的用于注释训练集的方法已被证明可以有效地减少专家的工作量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验