Suppr超能文献

加载过程中人类胎膜各亚层的光学相干断层扫描

Optical coherence tomography of human fetal membrane sub-layers during loading.

作者信息

Samimi Kayvan, Contreras Guzman Emmanuel, Wu May, Carlson Lindsey, Feltovich Helen, Hall Timothy J, Myers Kristin M, Oyen Michelle L, Skala Melissa C

机构信息

Morgridge Institute for Research, Madison, WI 53715, USA.

Department of Obstetrics and Gynecology, Intermountain Healthcare, Provo, UT 84604, USA.

出版信息

Biomed Opt Express. 2023 May 25;14(6):2969-2985. doi: 10.1364/BOE.489691. eCollection 2023 Jun 1.

Abstract

Fetal membranes have important mechanical and antimicrobial roles in maintaining pregnancy. However, the small thickness (<800 µm) of fetal membranes places them outside the resolution limits of most ultrasound and magnetic resonance systems. Optical imaging methods like optical coherence tomography (OCT) have the potential to fill this resolution gap. Here, OCT and machine learning methods were developed to characterize the properties of human fetal membranes under dynamic loading. A saline inflation test was incorporated into an OCT system, and tests were performed on n = 33 and n = 32 human samples obtained from labored and C-section donors, respectively. Fetal membranes were collected in near-cervical and near-placental locations. Histology, endogenous two photon fluorescence microscopy, and second harmonic generation microscopy were used to identify sources of contrast in OCT images of fetal membranes. A convolutional neural network was trained to automatically segment fetal membrane sub-layers with high accuracy (Dice coefficients >0.8). Intact amniochorion bilayer and separated amnion and chorion were individually loaded, and the amnion layer was identified as the load-bearing layer within intact fetal membranes for both labored and C-section samples, consistent with prior work. Additionally, the rupture pressure and thickness of the amniochorion bilayer from the near-placental region were greater than those of the near-cervical region for labored samples. This location-dependent change in fetal membrane thickness was not attributable to the load-bearing amnion layer. Finally, the initial phase of the loading curve indicates that amniochorion bilayer from the near-cervical region is strain-hardened compared to the near-placental region in labored samples. Overall, these studies fill a gap in our understanding of the structural and mechanical properties of human fetal membranes at high resolution under dynamic loading events.

摘要

胎膜在维持妊娠过程中具有重要的机械和抗菌作用。然而,胎膜的厚度较小(<800 µm),超出了大多数超声和磁共振系统的分辨率极限。像光学相干断层扫描(OCT)这样的光学成像方法有潜力填补这一分辨率差距。在此,开发了OCT和机器学习方法来表征动态加载下人胎膜的特性。将盐水膨胀试验纳入OCT系统,并分别对从顺产和剖宫产捐赠者获得的n = 33例和n = 32例人体样本进行了测试。在靠近宫颈和靠近胎盘的位置收集胎膜。组织学、内源性双光子荧光显微镜和二次谐波产生显微镜用于识别胎膜OCT图像中的对比度来源。训练了一个卷积神经网络以高精度自动分割胎膜子层(骰子系数>0.8)。对完整的羊膜绒毛膜双层以及分离的羊膜和绒毛膜分别进行加载,并且对于顺产和剖宫产样本,羊膜层均被确定为完整胎膜中的承重层,这与先前的研究一致。此外,顺产样本中靠近胎盘区域的羊膜绒毛膜双层的破裂压力和厚度大于靠近宫颈区域的。胎膜厚度的这种位置依赖性变化并非归因于承重的羊膜层。最后,加载曲线的初始阶段表明,顺产样本中靠近宫颈区域的羊膜绒毛膜双层与靠近胎盘区域相比发生了应变硬化。总体而言,这些研究填补了我们在动态加载事件下对人胎膜高分辨率结构和力学特性理解上的空白。

相似文献

1
Optical coherence tomography of human fetal membrane sub-layers during loading.
Biomed Opt Express. 2023 May 25;14(6):2969-2985. doi: 10.1364/BOE.489691. eCollection 2023 Jun 1.
2
Second harmonic generation microscopy of fetal membranes under deformation: normal and altered morphology.
Placenta. 2013 Nov;34(11):1020-6. doi: 10.1016/j.placenta.2013.09.002. Epub 2013 Sep 13.
3
Development of a multilayer fetal membrane material model calibrated using bulge inflation mechanical tests.
J Mech Behav Biomed Mater. 2024 Feb;150:106344. doi: 10.1016/j.jmbbm.2023.106344. Epub 2023 Dec 28.
4
Redefining 3Dimensional placental membrane microarchitecture using multiphoton microscopy and optical clearing.
Placenta. 2017 May;53:66-75. doi: 10.1016/j.placenta.2017.03.017. Epub 2017 Mar 30.
5
Function and failure of the fetal membrane: Modelling the mechanics of the chorion and amnion.
PLoS One. 2017 Mar 28;12(3):e0171588. doi: 10.1371/journal.pone.0171588. eCollection 2017.
7
Anatomy of the fetal membranes using optical coherence tomography: part 1.
Placenta. 2014 Dec;35(12):1065-9. doi: 10.1016/j.placenta.2014.09.011. Epub 2014 Sep 28.
9
10
Mechanical failure of human fetal membrane tissues.
J Mater Sci Mater Med. 2004 Jun;15(6):651-8. doi: 10.1023/b:jmsm.0000030205.62668.90.

引用本文的文献

1
Challenges in Adapting Fibre Optic Sensors for Biomedical Applications.
Biosensors (Basel). 2025 May 13;15(5):312. doi: 10.3390/bios15050312.
2
Development of a multilayer fetal membrane material model calibrated using bulge inflation mechanical tests.
J Mech Behav Biomed Mater. 2024 Feb;150:106344. doi: 10.1016/j.jmbbm.2023.106344. Epub 2023 Dec 28.

本文引用的文献

1
Computational modeling in pregnancy biomechanics research.
J Mech Behav Biomed Mater. 2022 Apr;128:105099. doi: 10.1016/j.jmbbm.2022.105099. Epub 2022 Jan 24.
2
Dynamic measurement of amnion thickness during loading by speckle pattern interferometry.
Placenta. 2021 Jan 15;104:284-294. doi: 10.1016/j.placenta.2021.01.001. Epub 2021 Jan 7.
4
On the defect tolerance of fetal membranes.
Interface Focus. 2019 Oct 6;9(5):20190010. doi: 10.1098/rsfs.2019.0010. Epub 2019 Aug 16.
5
Cartography of the mechanical properties of the human amniotic membrane.
J Mech Behav Biomed Mater. 2019 Nov;99:18-26. doi: 10.1016/j.jmbbm.2019.07.007. Epub 2019 Jul 13.
6
Discovery and Characterization of Human Amniochorionic Membrane Microfractures.
Am J Pathol. 2017 Dec;187(12):2821-2830. doi: 10.1016/j.ajpath.2017.08.019. Epub 2017 Sep 20.
7
The suture retention test, revisited and revised.
J Mech Behav Biomed Mater. 2018 Jan;77:711-717. doi: 10.1016/j.jmbbm.2017.08.021. Epub 2017 Aug 24.
8
ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks.
Biomed Opt Express. 2017 Jul 13;8(8):3627-3642. doi: 10.1364/BOE.8.003627. eCollection 2017 Aug 1.
9
In-vivo stretch of term human fetal membranes.
Placenta. 2016 Feb;38:57-66. doi: 10.1016/j.placenta.2015.12.011. Epub 2015 Dec 20.
10
Deformation mechanisms of human amnion: Quantitative studies based on second harmonic generation microscopy.
J Biomech. 2015 Jun 25;48(9):1606-13. doi: 10.1016/j.jbiomech.2015.01.045. Epub 2015 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验