Suppr超能文献

ReLayNet:使用全卷积网络对黄斑光学相干断层扫描进行视网膜层和液体分割

ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks.

作者信息

Roy Abhijit Guha, Conjeti Sailesh, Karri Sri Phani Krishna, Sheet Debdoot, Katouzian Amin, Wachinger Christian, Navab Nassir

机构信息

Computer Aided Medical Procedures, Technische Universität München, Munich, Germany.

Artificial Intelligence in Medical Imaging (AI-Med), Department of Child and Adolescent Psychiatry, Ludwig-Maximilians-University, Munich, Germany.

出版信息

Biomed Opt Express. 2017 Jul 13;8(8):3627-3642. doi: 10.1364/BOE.8.003627. eCollection 2017 Aug 1.

Abstract

Optical coherence tomography (OCT) is used for non-invasive diagnosis of diabetic macular edema assessing the retinal layers. In this paper, we propose a new fully convolutional deep architecture, termed ReLayNet, for end-to-end segmentation of retinal layers and fluid masses in eye OCT scans. ReLayNet uses a contracting path of convolutional blocks (encoders) to learn a hierarchy of contextual features, followed by an expansive path of convolutional blocks (decoders) for semantic segmentation. ReLayNet is trained to optimize a joint loss function comprising of weighted logistic regression and Dice overlap loss. The framework is validated on a publicly available benchmark dataset with comparisons against five state-of-the-art segmentation methods including two deep learning based approaches to substantiate its effectiveness.

摘要

光学相干断层扫描(OCT)用于评估视网膜各层,以对糖尿病性黄斑水肿进行无创诊断。在本文中,我们提出了一种全新的全卷积深度架构,称为ReLayNet,用于对眼部OCT扫描中的视网膜各层和液体积聚进行端到端分割。ReLayNet使用卷积块的收缩路径(编码器)来学习上下文特征层次结构,随后是用于语义分割的卷积块扩展路径(解码器)。ReLayNet经过训练以优化由加权逻辑回归和骰子重叠损失组成的联合损失函数。该框架在一个公开可用的基准数据集上进行了验证,并与包括两种基于深度学习的方法在内的五种最新分割方法进行了比较,以证实其有效性。

相似文献

1
ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks.
Biomed Opt Express. 2017 Jul 13;8(8):3627-3642. doi: 10.1364/BOE.8.003627. eCollection 2017 Aug 1.
2
LOCTseg: A lightweight fully convolutional network for end-to-end optical coherence tomography segmentation.
Comput Biol Med. 2022 Nov;150:106174. doi: 10.1016/j.compbiomed.2022.106174. Epub 2022 Oct 4.
3
RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional Network for Retinal OCT Fluid Segmentation.
IEEE Trans Med Imaging. 2023 May;42(5):1413-1423. doi: 10.1109/TMI.2022.3228285. Epub 2023 May 2.
4
A supervised joint multi-layer segmentation framework for retinal optical coherence tomography images using conditional random field.
Comput Methods Programs Biomed. 2018 Oct;165:235-250. doi: 10.1016/j.cmpb.2018.09.004. Epub 2018 Sep 5.
5
Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images.
Comput Methods Programs Biomed. 2019 Jul;176:69-80. doi: 10.1016/j.cmpb.2019.04.027. Epub 2019 Apr 24.
6
9
Joint segmentation of retinal layers and macular edema in optical coherence tomography scans based on RLMENet.
Med Phys. 2022 Nov;49(11):7150-7166. doi: 10.1002/mp.15866. Epub 2022 Aug 3.

引用本文的文献

2
Recent Optical Coherence Tomography (OCT) Innovations for Increased Accessibility and Remote Surveillance.
Bioengineering (Basel). 2025 Apr 23;12(5):441. doi: 10.3390/bioengineering12050441.
3
Nonperfused Retinal Capillaries-A New Method Developed on OCT and OCTA.
Invest Ophthalmol Vis Sci. 2025 Apr 1;66(4):22. doi: 10.1167/iovs.66.4.22.
5
Segmentation of 3D OCT Images of Human Skin Using Neural Networks with U-Net Architecture.
Sovrem Tekhnologii Med. 2025;17(1):6-16. doi: 10.17691/stm2025.17.1.01. Epub 2025 Feb 28.
6
Artificial intelligence in stroke risk assessment and management via retinal imaging.
Front Comput Neurosci. 2025 Feb 17;19:1490603. doi: 10.3389/fncom.2025.1490603. eCollection 2025.
7
OCT5k: A dataset of multi-disease and multi-graded annotations for retinal layers.
Sci Data. 2025 Feb 14;12(1):267. doi: 10.1038/s41597-024-04259-z.
9
Lightweight Retinal Layer Segmentation With Global Reasoning.
IEEE Trans Instrum Meas. 2024;73. doi: 10.1109/TIM.2024.3400305. Epub 2024 May 21.
10
Bibliometric analysis of research on the application of deep learning to ophthalmology.
Quant Imaging Med Surg. 2025 Jan 2;15(1):852-866. doi: 10.21037/qims-24-1340. Epub 2024 Dec 30.

本文引用的文献

1
Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search.
Biomed Opt Express. 2017 Apr 27;8(5):2732-2744. doi: 10.1364/BOE.8.002732. eCollection 2017 May 1.
2
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs.
IEEE Trans Pattern Anal Mach Intell. 2018 Apr;40(4):834-848. doi: 10.1109/TPAMI.2017.2699184. Epub 2017 Apr 27.
3
Learning layer-specific edges for segmenting retinal layers with large deformations.
Biomed Opt Express. 2016 Jun 30;7(7):2888-901. doi: 10.1364/BOE.7.002888. eCollection 2016 Jul 1.
4
Decreasing incidence of type 2 diabetes mellitus in the United States, 2007-2012: Epidemiologic findings from a large US claims database.
Diabetes Res Clin Pract. 2016 Jul;117:111-8. doi: 10.1016/j.diabres.2016.04.043. Epub 2016 Apr 30.
5
Fully Convolutional Networks for Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
6
Performance evaluation of automated segmentation software on optical coherence tomography volume data.
J Biophotonics. 2016 May;9(5):478-89. doi: 10.1002/jbio.201500239. Epub 2016 Mar 11.
7
Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema.
Biomed Opt Express. 2015 Mar 9;6(4):1172-94. doi: 10.1364/BOE.6.001172. eCollection 2015 Apr 1.
8
Lumen Segmentation in Intravascular Optical Coherence Tomography Using Backscattering Tracked and Initialized Random Walks.
IEEE J Biomed Health Inform. 2016 Mar;20(2):606-14. doi: 10.1109/JBHI.2015.2403713. Epub 2015 Feb 12.
9
Probabilistic intra-retinal layer segmentation in 3-D OCT images using global shape regularization.
Med Image Anal. 2014 Jul;18(5):781-94. doi: 10.1016/j.media.2014.03.004. Epub 2014 Apr 13.
10
Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology.
Biomed Opt Express. 2014 Jan 7;5(2):348-65. doi: 10.1364/BOE.5.000348. eCollection 2014 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验