Suppr超能文献

ReLayNet:使用全卷积网络对黄斑光学相干断层扫描进行视网膜层和液体分割

ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks.

作者信息

Roy Abhijit Guha, Conjeti Sailesh, Karri Sri Phani Krishna, Sheet Debdoot, Katouzian Amin, Wachinger Christian, Navab Nassir

机构信息

Computer Aided Medical Procedures, Technische Universität München, Munich, Germany.

Artificial Intelligence in Medical Imaging (AI-Med), Department of Child and Adolescent Psychiatry, Ludwig-Maximilians-University, Munich, Germany.

出版信息

Biomed Opt Express. 2017 Jul 13;8(8):3627-3642. doi: 10.1364/BOE.8.003627. eCollection 2017 Aug 1.

Abstract

Optical coherence tomography (OCT) is used for non-invasive diagnosis of diabetic macular edema assessing the retinal layers. In this paper, we propose a new fully convolutional deep architecture, termed ReLayNet, for end-to-end segmentation of retinal layers and fluid masses in eye OCT scans. ReLayNet uses a contracting path of convolutional blocks (encoders) to learn a hierarchy of contextual features, followed by an expansive path of convolutional blocks (decoders) for semantic segmentation. ReLayNet is trained to optimize a joint loss function comprising of weighted logistic regression and Dice overlap loss. The framework is validated on a publicly available benchmark dataset with comparisons against five state-of-the-art segmentation methods including two deep learning based approaches to substantiate its effectiveness.

摘要

光学相干断层扫描(OCT)用于评估视网膜各层,以对糖尿病性黄斑水肿进行无创诊断。在本文中,我们提出了一种全新的全卷积深度架构,称为ReLayNet,用于对眼部OCT扫描中的视网膜各层和液体积聚进行端到端分割。ReLayNet使用卷积块的收缩路径(编码器)来学习上下文特征层次结构,随后是用于语义分割的卷积块扩展路径(解码器)。ReLayNet经过训练以优化由加权逻辑回归和骰子重叠损失组成的联合损失函数。该框架在一个公开可用的基准数据集上进行了验证,并与包括两种基于深度学习的方法在内的五种最新分割方法进行了比较,以证实其有效性。

相似文献

引用本文的文献

9
Lightweight Retinal Layer Segmentation With Global Reasoning.基于全局推理的轻量级视网膜层分割
IEEE Trans Instrum Meas. 2024;73. doi: 10.1109/TIM.2024.3400305. Epub 2024 May 21.
10
Bibliometric analysis of research on the application of deep learning to ophthalmology.深度学习在眼科应用研究的文献计量分析
Quant Imaging Med Surg. 2025 Jan 2;15(1):852-866. doi: 10.21037/qims-24-1340. Epub 2024 Dec 30.

本文引用的文献

5
Fully Convolutional Networks for Semantic Segmentation.全卷积网络用于语义分割。
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验