Suppr超能文献

从 X 射线衍射出发,实现大腔体压机中压力和温度的联合原位测定。

Towards joint in situ determination of pressure and temperature in the large volume press exclusively from X-ray diffraction.

机构信息

Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.

出版信息

J Synchrotron Radiat. 2023 Jul 1;30(Pt 4):807-814. doi: 10.1107/S1600577523004538. Epub 2023 Jun 21.

Abstract

Since high-pressure devices have been used at synchrotron facilities, accurate determination of pressure and temperature in the sample has been a crucial objective, particularly for experiments that simulate the Earth's interior. However, in some cases using a thermocouple may have a high likelihood of failure or is incompatible with a high-pressure assembly. To address these challenges and similar issues, we aim to expand a previously proposed solution: to jointly estimate pressure and temperature (PT) through in situ X-ray diffraction, to cover a wider range of internal PT calibrants tested over larger PT ranges. A modifiable Python-based software is offered to quickly obtain results. To achieve these aims, in situ large volume press experiments are performed on pellets of intimately mixed powders of a halide (NaCl, KCl, KBr, CsCl) or MgO and a metal (Pt, Re, Mo, W, Ni) in the pressure range 3-11 GPa and temperature range 300-1800 K. Although the pressure range was chosen for practical reasons, it also covers an equally important depth range in the Earth (down to 350 km) for geoscience studies. A thermocouple was used to validate the PT conditions in the cell assemblies. The key results show that choosing the appropriate calibrant materials and using a joint PT estimation can yield surprisingly small uncertainties (i.e. <±0.1 GPa and <±50 K). This development is expected to benefit current and future research at extreme conditions, as other materials with high compressibility or high thermal pressure, stable over large PT ranges, may be discovered and used as PT calibrants.

摘要

由于高压设备已在同步加速器设施中使用,因此准确确定样品中的压力和温度一直是一个关键目标,特别是对于模拟地球内部的实验。然而,在某些情况下,使用热电偶可能存在高故障风险,或者与高压组件不兼容。为了解决这些挑战和类似的问题,我们旨在扩展之前提出的解决方案:通过原位 X 射线衍射联合估计压力和温度 (PT),以涵盖更广泛的内部 PT 校准范围,同时测试更大的 PT 范围。提供了一个可修改的基于 Python 的软件,以快速获得结果。为了实现这些目标,在 3-11 GPa 的压力范围和 300-1800 K 的温度范围内,对 intimately 混合卤化物(NaCl、KCl、KBr、CsCl)或 MgO 与金属(Pt、Re、Mo、W、Ni)粉末的压块进行了原位大体积压实验。虽然压力范围是出于实际原因选择的,但它也涵盖了地球科学研究中同样重要的深度范围(深达 350 公里)。使用热电偶来验证电池组件中的 PT 条件。关键结果表明,选择合适的校准材料并使用联合 PT 估计可以产生令人惊讶的小不确定性(即 <±0.1 GPa 和 <±50 K)。这一发展预计将使当前和未来在极端条件下的研究受益,因为可能会发现并使用其他具有高压缩性或高热压力、在大 PT 范围内稳定的材料作为 PT 校准剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fdd/10325023/1f334dd33d0a/s-30-00807-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验