Suppr超能文献

人工智能百科全书:一种用于评估人工智能领域研究影响的新型本体。

AI-SPedia: a novel ontology to evaluate the impact of research in the field of artificial intelligence.

作者信息

Maatouk Yasser

机构信息

Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia.

出版信息

PeerJ Comput Sci. 2022 Sep 22;8:e1099. doi: 10.7717/peerj-cs.1099. eCollection 2022.

Abstract

BACKGROUND

Sharing knowledge such as resources, research results, and scholarly documents, is of key importance to improving collaboration between researchers worldwide. Research results from the field of artificial intelligence (AI) are vital to share because of the extensive applicability of AI to several other fields of research. This has led to a significant increase in the number of AI publications over the past decade. The metadata of AI publications, including bibliometrics and altmetrics indicators, can be accessed by searching familiar bibliographical databases such as Web of Science (WoS), which enables the impact of research to be evaluated and identify rising researchers and trending topics in the field of AI.

PROBLEM DESCRIPTION

In general, bibliographical databases have two limitations in terms of the type and form of metadata we aim to improve. First, most bibliographical databases, such as WoS, are more concerned with bibliometric indicators and do not offer a wide range of altmetric indicators to complement traditional bibliometric indicators. Second, the traditional format in which data is downloaded from bibliographical databases limits users to keyword-based searches without considering the semantics of the data.

PROPOSED SOLUTION

To overcome these limitations, we developed a repository, named AI-SPedia. The repository contains semantic knowledge of scientific publications concerned with AI and considers both the bibliometric and altmetric indicators. Moreover, it uses semantic web technology to produce and store data to enable semantic-based searches. Furthermore, we devised related competency questions to be answered by posing smart queries against the AI-SPedia datasets.

RESULTS

The results revealed that AI-SPedia can evaluate the impact of AI research by exploiting knowledge that is not explicitly mentioned but extracted using the power of semantics. Moreover, a simple analysis was performed based on the answered questions to help make research policy decisions in the AI domain. The end product, AI-SPedia, is considered the first attempt to evaluate the impacts of AI scientific publications using both bibliometric and altmetric indicators and the power of semantic web technology.

摘要

背景

共享资源、研究成果和学术文献等知识对于促进全球研究人员之间的合作至关重要。由于人工智能(AI)在其他多个研究领域具有广泛的适用性,因此分享人工智能领域的研究成果至关重要。这导致在过去十年中人工智能出版物的数量大幅增加。通过搜索诸如科学引文索引(WoS)等常见的书目数据库,可以获取人工智能出版物的元数据,包括文献计量学和替代计量学指标,这有助于评估研究的影响力,并识别人工智能领域中崭露头角的研究人员和热门话题。

问题描述

一般来说,书目数据库在我们旨在改进的元数据类型和形式方面存在两个局限性。首先,大多数书目数据库,如WoS,更关注文献计量指标,没有提供广泛的替代计量指标来补充传统的文献计量指标。其次,从书目数据库下载数据的传统格式限制用户只能进行基于关键词的搜索,而不考虑数据的语义。

提出的解决方案

为了克服这些局限性,我们开发了一个名为AI-SPedia的知识库。该知识库包含与人工智能相关的科学出版物的语义知识,并同时考虑文献计量和替代计量指标。此外,它使用语义网技术来生成和存储数据,以实现基于语义的搜索。此外,我们设计了相关的能力问题,通过对AI-SPedia数据集提出智能查询来进行回答。

结果

结果表明,AI-SPedia可以通过利用未明确提及但通过语义力量提取的知识来评估人工智能研究的影响力。此外,基于回答的问题进行了简单分析,以帮助在人工智能领域做出研究政策决策。最终产品AI-SPedia被认为是首次尝试使用文献计量和替代计量指标以及语义网技术的力量来评估人工智能科学出版物的影响力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45ce/10280256/3861a4ded649/peerj-cs-08-1099-g001.jpg

相似文献

1
AI-SPedia: a novel ontology to evaluate the impact of research in the field of artificial intelligence.
PeerJ Comput Sci. 2022 Sep 22;8:e1099. doi: 10.7717/peerj-cs.1099. eCollection 2022.
5
Global Research Trends of Artificial Intelligence on Histopathological Images: A 20-Year Bibliometric Analysis.
Int J Environ Res Public Health. 2022 Sep 15;19(18):11597. doi: 10.3390/ijerph191811597.
7
Artificial Intelligence in Health Care: Bibliometric Analysis.
J Med Internet Res. 2020 Jul 29;22(7):e18228. doi: 10.2196/18228.
8
Trends in artificial intelligence in nursing: Impacts on nursing management.
J Nurs Manag. 2022 Nov;30(8):3644-3653. doi: 10.1111/jonm.13770. Epub 2022 Aug 25.
9
SCINOBO: a novel system classifying scholarly communication in a dynamically constructed hierarchical Field-of-Science taxonomy.
Front Res Metr Anal. 2023 May 4;8:1149834. doi: 10.3389/frma.2023.1149834. eCollection 2023.

引用本文的文献

本文引用的文献

1
A collaborative semantic-based provenance management platform for reproducibility.
PeerJ Comput Sci. 2022 Mar 10;8:e921. doi: 10.7717/peerj-cs.921. eCollection 2022.
2
The Correlation Between Altmetric Score and Traditional Bibliometrics in Orthopaedic Literature.
J Surg Res. 2021 Dec;268:705-711. doi: 10.1016/j.jss.2021.07.025. Epub 2021 Sep 3.
3
LOPDF: a framework for extracting and producing open data of scientific documents for smart digital libraries.
PeerJ Comput Sci. 2021 Apr 7;7:e445. doi: 10.7717/peerj-cs.445. eCollection 2021.
4
Examining the correlation between Altmetric score and citation count in the anaesthesiology literature.
Br J Anaesth. 2020 Aug;125(2):e223-e226. doi: 10.1016/j.bja.2020.04.086. Epub 2020 Jun 20.
5
Analyzing the relationship between Altmetric score and literature citations in the Implantology literature.
Clin Implant Dent Relat Res. 2020 Feb;22(1):54-58. doi: 10.1111/cid.12876. Epub 2019 Dec 12.
6
The Evolution of Current Research Impact Metrics: From Bibliometrics to Altmetrics?
Clin Spine Surg. 2017 Jun;30(5):226-228. doi: 10.1097/BSD.0000000000000531.
7
Altmetrics: Value all research products.
Nature. 2013 Jan 10;493(7431):159. doi: 10.1038/493159a.
8
Bibliometric indicators: quality measurements of scientific publication.
Radiology. 2010 May;255(2):342-51. doi: 10.1148/radiol.09090626.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验