文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

全球基于组织病理图像的人工智能研究趋势:20 年文献计量分析。

Global Research Trends of Artificial Intelligence on Histopathological Images: A 20-Year Bibliometric Analysis.

机构信息

Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410031, China.

Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University School, New Orleans, LA 70112, USA.

出版信息

Int J Environ Res Public Health. 2022 Sep 15;19(18):11597. doi: 10.3390/ijerph191811597.


DOI:10.3390/ijerph191811597
PMID:36141871
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9517580/
Abstract

Cancer has become a major threat to global health care. With the development of computer science, artificial intelligence (AI) has been widely applied in histopathological images (HI) analysis. This study analyzed the publications of AI in HI from 2001 to 2021 by bibliometrics, exploring the research status and the potential popular directions in the future. A total of 2844 publications from the Web of Science Core Collection were included in the bibliometric analysis. The country/region, institution, author, journal, keyword, and references were analyzed by using VOSviewer and CiteSpace. The results showed that the number of publications has grown rapidly in the last five years. The USA is the most productive and influential country with 937 publications and 23,010 citations, and most of the authors and institutions with higher numbers of publications and citations are from the USA. Keyword analysis showed that breast cancer, prostate cancer, colorectal cancer, and lung cancer are the tumor types of greatest concern. Co-citation analysis showed that classification and nucleus segmentation are the main research directions of AI-based HI studies. Transfer learning and self-supervised learning in HI is on the rise. This study performed the first bibliometric analysis of AI in HI from multiple indicators, providing insights for researchers to identify key cancer types and understand the research trends of AI application in HI.

摘要

癌症已成为全球医疗保健的主要威胁。随着计算机科学的发展,人工智能(AI)已广泛应用于组织病理学图像(HI)分析。本研究通过文献计量学分析了 2001 年至 2021 年 AI 在 HI 中的出版物,探索了未来的研究现状和潜在的热门方向。对来自 Web of Science Core Collection 的 2844 篇文献进行了文献计量学分析。使用 Vosviewer 和 Citespace 分析了国家/地区、机构、作者、期刊、关键词和参考文献。结果表明,过去五年的出版物数量增长迅速。美国是最具生产力和影响力的国家,发表了 937 篇论文,被引次数为 23010 次,发表论文和被引论文较多的作者和机构大多来自美国。关键词分析表明,乳腺癌、前列腺癌、结直肠癌和肺癌是最受关注的肿瘤类型。共被引分析表明,基于 AI 的 HI 研究的主要研究方向是分类和核分割。HI 中的迁移学习和自我监督学习正在兴起。本研究从多个指标对 AI 在 HI 中的应用进行了首次文献计量学分析,为研究人员确定关键癌症类型和了解 AI 在 HI 中的应用研究趋势提供了参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d1b/9517580/0448d91a6fac/ijerph-19-11597-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d1b/9517580/61aaaeef07e5/ijerph-19-11597-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d1b/9517580/999f25c428bb/ijerph-19-11597-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d1b/9517580/f72511d1f566/ijerph-19-11597-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d1b/9517580/a25e519abb02/ijerph-19-11597-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d1b/9517580/093ed47d687c/ijerph-19-11597-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d1b/9517580/316777d3e05d/ijerph-19-11597-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d1b/9517580/c0c57b648aa6/ijerph-19-11597-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d1b/9517580/0448d91a6fac/ijerph-19-11597-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d1b/9517580/61aaaeef07e5/ijerph-19-11597-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d1b/9517580/999f25c428bb/ijerph-19-11597-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d1b/9517580/f72511d1f566/ijerph-19-11597-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d1b/9517580/a25e519abb02/ijerph-19-11597-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d1b/9517580/093ed47d687c/ijerph-19-11597-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d1b/9517580/316777d3e05d/ijerph-19-11597-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d1b/9517580/c0c57b648aa6/ijerph-19-11597-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d1b/9517580/0448d91a6fac/ijerph-19-11597-g008.jpg

相似文献

[1]
Global Research Trends of Artificial Intelligence on Histopathological Images: A 20-Year Bibliometric Analysis.

Int J Environ Res Public Health. 2022-9-15

[2]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[3]
Global research trends and foci of artificial intelligence-based tumor pathology: a scientometric study.

J Transl Med. 2022-9-6

[4]
The Global Research of Artificial Intelligence on Prostate Cancer: A 22-Year Bibliometric Analysis.

Front Oncol. 2022-3-1

[5]
Medical Education and Artificial Intelligence: Web of Science-Based Bibliometric Analysis (2013-2022).

JMIR Med Educ. 2024-10-10

[6]
Artificial Intelligence in Chronic Obstructive Pulmonary Disease: Research Status, Trends, and Future Directions --A Bibliometric Analysis from 2009 to 2023.

Int J Chron Obstruct Pulmon Dis. 2024

[7]
Application of artificial intelligence in rheumatic disease: a bibliometric analysis.

Clin Exp Med. 2024-8-23

[8]
Global research trends of artificial intelligence applied in esophageal carcinoma: A bibliometric analysis (2000-2022) CiteSpace and VOSviewer.

Front Oncol. 2022-8-25

[9]
Global research trends of the application of artificial intelligence in bladder cancer since the 21st century: a bibliometric analysis.

Front Oncol. 2023-11-29

[10]
A Bibliometric Analysis of Artificial Intelligence Applications in Spine Care.

J Neurol Surg A Cent Eur Neurosurg. 2024-1

引用本文的文献

[1]
A Thorough Review of the Clinical Applications of Artificial Intelligence in Lung Cancer.

Cancers (Basel). 2025-3-4

[2]
The State of Radiology Research in Ethiopia: A Scoping Review.

Ethiop J Health Sci. 2024-10

[3]
Bibliometric analysis of 100 top cited articles of heart failure-associated diseases in combination with machine learning.

Front Cardiovasc Med. 2023-5-25

[4]
Global research trends and hotspots analysis of hallux valgus: A bibliometric analysis from 2004 to 2021.

Front Surg. 2023-3-7

本文引用的文献

[1]
Self-supervised learning methods and applications in medical imaging analysis: a survey.

PeerJ Comput Sci. 2022-7-19

[2]
Self-supervised learning in medicine and healthcare.

Nat Biomed Eng. 2022-12

[3]
DeepSMILE: Contrastive self-supervised pre-training benefits MSI and HRD classification directly from H&E whole-slide images in colorectal and breast cancer.

Med Image Anal. 2022-7

[4]
The Global Research of Artificial Intelligence on Prostate Cancer: A 22-Year Bibliometric Analysis.

Front Oncol. 2022-3-1

[5]
Effect of Training Data Volume on Performance of Convolutional Neural Network Pneumothorax Classifiers.

J Digit Imaging. 2022-8

[6]
Cancer statistics in China and United States, 2022: profiles, trends, and determinants.

Chin Med J (Engl). 2022-2-9

[7]
Deep Learning on Histopathology Images for Breast Cancer Classification: A Bibliometric Analysis.

Healthcare (Basel). 2021-12-22

[8]
Domain- and task-specific transfer learning for medical segmentation tasks.

Comput Methods Programs Biomed. 2022-2

[9]
Integrative oncology: Addressing the global challenges of cancer prevention and treatment.

CA Cancer J Clin. 2022-3

[10]
Self-supervised driven consistency training for annotation efficient histopathology image analysis.

Med Image Anal. 2022-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索