Fang Haojun, Mahmood Tahir, Ali Zeeshan, Zeng Shouzhen, Jin Yun
Wuxi Vocational College of Science and Technology, Wuxi, China.
International Islamic University Islamabad, Islamabad, Pakistan.
PeerJ Comput Sci. 2023 May 11;9:e1362. doi: 10.7717/peerj-cs.1362. eCollection 2023.
Aczel-Alsina t-norm and t-conorm are a valuable and feasible technique to manage ambiguous and inconsistent information because of their dominant characteristics of broad parameter values. The main theme of this analysis is to explore Aczel-Alsina operational laws in the presence of the complex interval-valued intuitionistic fuzzy (CIVIF) set theory. Furthermore, we derive the theory of aggregation frameworks based on Aczel-Alsina operational laws for managing the theory of CIVIF information. The CIVIF Aczel-Alsina weighted averaging (CIVIFAAWA), CIVIF Aczel-Alsina ordered weighted averaging (CIVIFAAOWA), CIVIF Aczel-Alsina hybrid averaging (CIVIFAAHA), CIVIF Aczel-Alsina weighted geometric (CIVIFAAWG), CIVIF Aczel-Alsina ordered weighted geometric (CIVIFAAOWG) and CIVIF Aczel-Alsina hybrid geometric (CIVIFAAHG) operators are proposed, and their well-known properties and particular cases are also detailly derived. Further, we derive the theory of the WASPAS method for CIVIF information and evaluate their positive and negative aspects. Additionally, we demonstrate the multi-attribute decision-making (MADM) strategy under the invented works. Finally, we express the supremacy and dominancy of the invented methods with the help of sensitive analysis and geometrical shown of the explored works.
阿采尔 - 阿尔西纳三角模和三角余模是一种管理模糊和不一致信息的有价值且可行的技术,因为它们具有参数值范围广的显著特点。本分析的主要主题是在复杂区间值直觉模糊(CIVIF)集理论的背景下探索阿采尔 - 阿尔西纳运算定律。此外,我们推导了基于阿采尔 - 阿尔西纳运算定律的聚合框架理论,用于管理CIVIF信息理论。提出了CIVIF阿采尔 - 阿尔西纳加权平均(CIVIFAAWA)、CIVIF阿采尔 - 阿尔西纳有序加权平均(CIVIFAAOWA)、CIVIF阿采尔 - 阿尔西纳混合平均(CIVIFAAHA)、CIVIF阿采尔 - 阿尔西纳加权几何(CIVIFAAWG)、CIVIF阿采尔 - 阿尔西纳有序加权几何(CIVIFAAOWG)和CIVIF阿采尔 - 阿尔西纳混合几何(CIVIFAAHG)算子,并详细推导了它们的著名性质和特殊情况。此外,我们推导了用于CIVIF信息的WASPAS方法理论,并评估了其优缺点。另外,我们展示了在这些创新工作下的多属性决策(MADM)策略。最后,我们借助敏感性分析和所探索工作的几何展示来体现这些创新方法的优越性和主导性。