Hussain Amir, Zhu Xiaoya, Ullah Kifayat, Sarfaraz Mehvish, Yin Shi, Pamucar Dragan
Department of Mathematics, Riphah International University Lahore, Lahore54000, Pakistan.
School of Politics and Public Administration, Soochow University, China.
Heliyon. 2023 Nov 30;9(12):e23067. doi: 10.1016/j.heliyon.2023.e23067. eCollection 2023 Dec.
The fusion of information is a very hectic process whenever we analyze the information. Several frameworks have been introduced to reduce the uncertainty while fusing the information. Among those techniques, the Pythagorean fuzzy rough set (PyFRS), which is based on approximations is a key idea for dealing with uncertainty when data is taken from real-world circumstances. Furthermore, the most adaptable and flexible operational laws based on the parameters for fuzzy frameworks are Aczel-Alsina t-norm (AATNM) and Aczel-Alsina t-conorm (AATCNM). The major goal of this work is to introduce some methods for the basic operations of the information in the shape of Pythagorean fuzzy rough (PyFR) values (PyFRVs). Consequently, the PyFR Aczel-Alsina weighted geometric (PyFRAAWG), PyFR Aczel-Alsina ordered weighted geometric (PyFRAAOWG), and PyFR Aczel-Alsina hybrid weighted geometric (PyFRAAHWG) operators are developed in this article based on AATNM and AATCNM. Further, some basic properties of the developed operators are observed and discussed. Further, the developed approaches are applied to the problem of multi-attribute group decision-making (MAGDM). The obtained results from the MAGDM problem are observed at various values of the parameters involved by AATNM and AATCNM. Moreover, the results are also compared with already existing techniques for the significance of the developed approach.
每当我们分析信息时,信息融合都是一个非常繁忙的过程。已经引入了几个框架来在融合信息时减少不确定性。在这些技术中,基于近似的毕达哥拉斯模糊粗糙集(PyFRS)是处理从现实世界环境中获取数据时不确定性的关键思想。此外,基于模糊框架参数的最具适应性和灵活性的运算定律是阿采尔 - 阿尔西纳三角模(AATNM)和阿采尔 - 阿尔西纳三角余模(AATCNM)。这项工作的主要目标是引入一些以毕达哥拉斯模糊粗糙(PyFR)值(PyFRV)形式进行信息基本运算的方法。因此,本文基于AATNM和AATCNM开发了毕达哥拉斯模糊粗糙阿采尔 - 阿尔西纳加权几何(PyFRAAWG)、毕达哥拉斯模糊粗糙阿采尔 - 阿尔西纳有序加权几何(PyFRAAOWG)和毕达哥拉斯模糊粗糙阿采尔 - 阿尔西纳混合加权几何(PyFRAAHWG)算子。此外,观察并讨论了所开发算子的一些基本性质。进一步,将所开发的方法应用于多属性群决策(MAGDM)问题。在AATNM和AATCNM所涉及参数的各种值下观察MAGDM问题的所得结果。此外,还将结果与现有技术进行比较以体现所开发方法的重要性。