Suppr超能文献

预测植物上大肠杆菌 O157:H7 和沙门氏菌的种群动态:基于气象参数和细菌状态的机理数学模型。

Predictive Population Dynamics of Escherichia coli O157:H7 and Salmonella enterica on Plants: a Mechanistic Mathematical Model Based on Weather Parameters and Bacterial State.

机构信息

Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA.

Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.

出版信息

Appl Environ Microbiol. 2023 Jul 26;89(7):e0070023. doi: 10.1128/aem.00700-23. Epub 2023 Jun 22.

Abstract

Weather affects key aspects of bacterial behavior on plants but has not been extensively investigated as a tool to assess risk of crop contamination with human foodborne pathogens. A novel mechanistic model informed by weather factors and bacterial state was developed to predict population dynamics on leafy vegetables and tested against published data tracking Escherichia coli O157:H7 (EcO157) and Salmonella enterica populations on lettuce and cilantro plants. The model utilizes temperature, radiation, and dew point depression to characterize pathogen growth and decay rates. Additionally, the model incorporates the population level effect of bacterial physiological state dynamics in the phyllosphere in terms of the duration and frequency of specific weather parameters. The model accurately predicted EcO157 and S. enterica population sizes on lettuce and cilantro leaves in the laboratory under various conditions of temperature, relative humidity, light intensity, and cycles of leaf wetness and dryness. Importantly, the model successfully predicted EcO157 population dynamics on 4-week-old romaine lettuce plants under variable weather conditions in nearly all field trials. Prediction of initial EcO157 population decay rates after inoculation of 6-week-old romaine plants in the same field study was better than that of long-term survival. This suggests that future augmentation of the model should consider plant age and species morphology by including additional physical parameters. Our results highlight the potential of a comprehensive weather-based model in predicting contamination risk in the field. Such a modeling approach would additionally be valuable for timing field sampling in quality control to ensure the microbial safety of produce. Fruits and vegetables are important sources of foodborne disease. Novel approaches to improve the microbial safety of produce are greatly lacking. Given that bacterial behavior on plant surfaces is highly dependent on weather factors, risk assessment informed by meteorological data may be an effective tool to integrate into strategies to prevent crop contamination. A mathematical model was developed to predict the population trends of pathogenic E. coli and S. enterica, two major causal agents of foodborne disease associated with produce, on leaves. Our model is based on weather parameters and rates of switching between the active (growing) and inactive (nongrowing) bacterial state resulting from prevailing environmental conditions on leaf surfaces. We demonstrate that the model has the ability to accurately predict dynamics of enteric pathogens on leaves and, notably, sizes of populations of pathogenic E. coli over time after inoculation onto the leaves of young lettuce plants in the field.

摘要

天气会影响细菌在植物上的行为的关键方面,但它尚未被广泛用作评估作物与人食源性病原体污染风险的工具。本研究开发了一种新的基于气象因素和细菌状态的机制模型,用于预测叶菜类蔬菜上的种群动态,并根据在生菜和香菜植物上跟踪大肠杆菌 O157:H7(EcO157)和沙门氏菌属种群的已发表数据对其进行了测试。该模型利用温度、辐射和露点凹陷来描述病原体的生长和衰减率。此外,该模型还将细菌生理状态动态在叶面上的种群水平效应纳入特定气象参数的持续时间和频率。该模型在各种温度、相对湿度、光照强度和叶片湿润和干燥循环条件下,准确预测了实验室中生菜和香菜叶片上 EcO157 和 S. enterica 的种群大小。重要的是,该模型成功预测了在几乎所有田间试验中,变量天气条件下 4 周龄罗马生菜植株上 EcO157 的种群动态。同一田间研究中对 6 周龄罗马生菜植株接种后 EcO157 初始种群衰减率的预测优于长期存活预测。这表明,未来应通过纳入其他物理参数来考虑植物年龄和物种形态,从而对模型进行扩充。我们的研究结果突出了基于全面气象模型预测田间污染风险的潜力。这种建模方法对于在质量控制中进行田间采样时间的安排也很有价值,以确保农产品的微生物安全。水果和蔬菜是食源性疾病的重要来源。缺乏提高农产品微生物安全性的新方法。鉴于细菌在植物表面的行为高度依赖于气象因素,基于气象数据的风险评估可能是一种有效的工具,可以整合到预防作物污染的策略中。本研究开发了一种数学模型来预测两种主要的食源性疾病病原体——大肠杆菌和沙门氏菌属在叶片上的种群趋势,这两种病原体与农产品有关。我们的模型基于天气参数和由于叶片表面的环境条件而导致的活跃(生长)和不活跃(非生长)细菌状态之间的转换率。我们证明该模型能够准确预测肠道病原体在叶片上的动态,并且在接种到年轻生菜植物叶片上后,能够显著预测一段时间内致病性大肠杆菌的种群大小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94bb/10370311/2a812537aebe/aem.00700-23-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验