Isotope Application Division (IAD), Pakistan Institute of Nuclear Science and Technology (PINSTECH), P.O. Nilore, Islamabad, Pakistan.
Institute of Geology, University of the Punjab, Lahore, 54590, Pakistan.
Environ Geochem Health. 2023 Aug;45(8):6643-6673. doi: 10.1007/s10653-023-01635-3. Epub 2023 Jun 22.
The study area is a part of the Salt Range, where water quality is being deteriorated by natural and anthropogenic sources. This research integrates water quality assessment, arsenic enrichment, hydrogeochemical processes, groundwater recharge and carbon sources in aquifer. Total dissolved solid (TDS) contents in springs water, lake water and groundwater are in range of 681-847 mg/L, 2460-5051 mg/L and 513-7491 mg/L, respectively. The higher concentrations of magnesium and calcium in water bodies next to sodium are because of carbonates, sulfates, halite and silicates dissolution. The average concentrations of ions in groundwater are in order of HCO > SO > Cl > Na > Mg > Ca > K > NO, virtually analogous to springs water, but different from lake water, categorized as poor quality and unfit for drinking purposes. Based on major ions hydrochemistry, NaCl and mixed Ca-Mg-Cl type hydrochemical facies are associated with concentration of arsenic (4.2-39.5 µg/L) in groundwater. Groundwater samples (70%) having arsenic concentration (11 ≤ As ≤ 39.5 µg/L) exceeded from World Health Organization (WHO) guideline (As ≤ 10 µg/L) in near neutral to slightly alkaline (6.7 ≤ pH ≤ 8.3), positive Eh(6 ≤ Eh ≤ 204 mV), signifying its oxic condition. Eh-pH diagrams for arsenic and iron indicate that 80% of groundwater for arsenic and iron were in compartments of HAsO and Fe(OH), unveil oxic environment. Arsenic is moderately positive correlated with TDS, sodium, chloride, bicarbonate, nitrate, sulfate and weak negative with δC in surface and groundwater, forecasting multiple sources of arsenic to aquifer. Stable isotopes of waters show recharge of groundwater from local rain and lake water. The lower δC values of groundwater are modified by influx of CO produced during biological oxidation of soil natural organic matter.
研究区位于盐岭的一部分,那里的水质受到自然和人为来源的恶化。本研究综合了水质评估、砷富集、水文地球化学过程、地下水补给和含水层中的碳源。泉水、湖水和地下水的总溶解固体 (TDS) 含量分别在 681-847 mg/L、2460-5051 mg/L 和 513-7491 mg/L 范围内。水体中靠近钠的镁和钙浓度较高,是因为碳酸盐、硫酸盐、岩盐和硅酸盐的溶解。地下水的平均离子浓度顺序为 HCO > SO > Cl > Na > Mg > Ca > K > NO,与泉水基本相似,但与湖水不同,湖水被归类为劣质水,不适合饮用。根据主要离子水化学,与地下水砷浓度(4.2-39.5 µg/L)相关的是 NaCl 和混合 Ca-Mg-Cl 型水化学相。地下水样品(70%)的砷浓度(11 ≤ As ≤ 39.5 µg/L)超过世界卫生组织(WHO)准则(As ≤ 10 µg/L),在近中性到略碱性(6.7 ≤ pH ≤ 8.3)、正 Eh(6 ≤ Eh ≤ 204 mV)条件下,表明其处于氧化状态。砷和铁的 Eh-pH 图表明,80%的地下水砷和铁处于 HAsO 和 Fe(OH) 的隔室中,揭示了氧化环境。砷与 TDS、钠、氯、碳酸氢盐、硝酸盐、硫酸盐呈中度正相关,与地表水和地下水中的 δC 呈弱负相关,表明砷有多种来源进入含水层。水的稳定同位素表明,地下水的补给来自当地雨水和湖水。地下水的 δC 值较低是由于土壤自然有机质生物氧化过程中产生的 CO 的流入而发生了变化。