Department of Chemistry, University of California Irvine, Irvine, California 92617, United States.
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
J Phys Chem Lett. 2023 Jul 6;14(26):6001-6008. doi: 10.1021/acs.jpclett.3c01053. Epub 2023 Jun 22.
Dinoflagellate luciferin bioluminescence is unique since it does not rely on decarboxylation but is poorly understood compared to that of firefly, bacteria, and coelenterata luciferins. Here we computationally investigate possible protonation states, stereoisomers, a chemical mechanism, and the dynamics of the bioluminescence intermediate that is responsible for chemiexcitation. Using semiempirical dynamics, time-dependent density functional theory static calculations, and a correlation diagram, we find that the intermediate's functional group that is likely responsible for chemiexcitation is a 4-member ring, a dioxetanol, that undergoes [2π + 2π] cycloreversion and the biolumiphore is the cleaved structure. The simulated emission spectra and luciferase-dependent absorbance spectra agree with the experimental data, giving support to our proposed mechanism and biolumiphore. We also compute circular dichroism spectra of the intermediate's four stereoisomers to guide future experiments in differentiating them.
甲藻荧光素生物发光是独特的,因为它不依赖于脱羧,但其理解程度不如萤火虫、细菌和腔肠动物荧光素。在这里,我们通过计算来研究可能的质子化状态、立体异构体、化学机制以及负责化学激发的生物发光中间体的动力学。我们使用半经验动力学、含时密度泛函理论静态计算和相关图,发现中间体中可能负责化学激发的功能团是一个 4 元环,即二氧戊环,它经历[2π+2π]环重排,生物发光体是被切断的结构。模拟的发射光谱和依赖于荧光素的吸收光谱与实验数据一致,支持了我们提出的机制和生物发光体。我们还计算了中间体的四个立体异构体的圆二色性光谱,以指导未来区分它们的实验。