Suppr超能文献

笼状荧光素可实现快速的多组分生物发光成像。

Caged luciferins enable rapid multicomponent bioluminescence imaging.

机构信息

Department of Chemistry, University of California, Irvine, Irvine, California, USA.

Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA.

出版信息

Photochem Photobiol. 2024 Jan-Feb;100(1):67-74. doi: 10.1111/php.13814. Epub 2023 May 31.

Abstract

Bioluminescence is a sensitive technique for imaging biological features over time. Historically, though, the modality has been challenging to employ for multiplexed tracking due to a lack of resolvable luciferase-luciferin pairs. Recent years have seen the development of numerous orthogonal probes for multi-parameter imaging. While successful, generating such tools often requires complex syntheses and lengthy enzyme evolution campaigns. This work showcases an alternative strategy for multiplexed bioluminescence that takes advantage of already-orthogonal caged luciferins and established uncaging enzymes. These probes generate unique bioluminescent signals that can be distinguished via a linear unmixing algorithm. Caged luciferins enabled two- and three-component imaging on the minutes time scale. We further showed that the tools can be used in conjunction with endogenous enzymes for multiplexed studies. Collectively, this approach lowers the barrier to multicomponent bioluminescence imaging and can be readily adopted by the broader community.

摘要

生物发光是一种用于随时间对生物特征进行成像的灵敏技术。然而,由于缺乏可分辨的荧光素酶-荧光素对,该模式在过去一直难以用于多重跟踪。近年来,已经开发出许多用于多参数成像的正交探针。虽然这些工具已经取得了成功,但通常需要复杂的合成和漫长的酶进化过程。这项工作展示了一种用于多重生物发光的替代策略,该策略利用了已经正交的笼状荧光素和已建立的解笼酶。这些探针产生独特的生物发光信号,可以通过线性解混算法进行区分。笼状荧光素使两分钟和三分钟时间尺度的两成分和三成分成像成为可能。我们进一步表明,这些工具可以与内源性酶一起用于多重研究。总的来说,这种方法降低了多组分生物发光成像的门槛,并且可以被更广泛的研究社区采用。

相似文献

1
Caged luciferins enable rapid multicomponent bioluminescence imaging.
Photochem Photobiol. 2024 Jan-Feb;100(1):67-74. doi: 10.1111/php.13814. Epub 2023 May 31.
2
Building Biological Flashlights: Orthogonal Luciferases and Luciferins for Imaging.
Acc Chem Res. 2019 Nov 19;52(11):3039-3050. doi: 10.1021/acs.accounts.9b00391. Epub 2019 Oct 8.
3
Red-Shifted Coumarin Luciferins for Improved Bioluminescence Imaging.
J Am Chem Soc. 2023 Feb 15;145(6):3335-3345. doi: 10.1021/jacs.2c07220. Epub 2023 Feb 6.
4
Rapid Multicomponent Bioluminescence Imaging Substrate Unmixing.
ACS Chem Biol. 2021 Apr 16;16(4):682-690. doi: 10.1021/acschembio.0c00959. Epub 2021 Mar 17.
5
Multicomponent Bioluminescence Imaging with Naphthylamino Luciferins.
Chembiochem. 2021 Aug 17;22(16):2650-2654. doi: 10.1002/cbic.202100202. Epub 2021 Jun 30.
6
Orthogonal Bioluminescent Probes from Disubstituted Luciferins.
Biochemistry. 2021 Mar 2;60(8):563-572. doi: 10.1021/acs.biochem.0c00894. Epub 2021 Feb 18.
7
Orthogonal Luciferase-Luciferin Pairs for Bioluminescence Imaging.
J Am Chem Soc. 2017 Feb 15;139(6):2351-2358. doi: 10.1021/jacs.6b11737. Epub 2017 Feb 3.
8
Multicomponent Bioluminescence Imaging with a π-Extended Luciferin.
J Am Chem Soc. 2020 Aug 19;142(33):14080-14089. doi: 10.1021/jacs.0c01064. Epub 2020 Aug 4.
9
Biochemical Analysis Leads to Improved Orthogonal Bioluminescent Tools.
Chembiochem. 2023 Mar 14;24(6):e202200726. doi: 10.1002/cbic.202200726. Epub 2023 Feb 10.
10
Multiplexed bioluminescence imaging with a substrate unmixing platform.
Cell Chem Biol. 2022 Nov 17;29(11):1649-1660.e4. doi: 10.1016/j.chembiol.2022.10.004. Epub 2022 Oct 24.

引用本文的文献

1
Luminescence Probes in Bio-Applications: From Principle to Practice.
Biosensors (Basel). 2024 Jul 8;14(7):333. doi: 10.3390/bios14070333.
2
Engineering luminopsins with improved coupling efficiencies.
Neurophotonics. 2024 Apr;11(2):024208. doi: 10.1117/1.NPh.11.2.024208. Epub 2024 Mar 29.

本文引用的文献

1
Hydrolysis-Resistant Ester-Based Linkers for Development of Activity-Based NIR Bioluminescence Probes.
J Am Chem Soc. 2023 Jan 18;145(2):1460-1469. doi: 10.1021/jacs.2c12984. Epub 2023 Jan 5.
2
Multiplexed bioluminescence imaging with a substrate unmixing platform.
Cell Chem Biol. 2022 Nov 17;29(11):1649-1660.e4. doi: 10.1016/j.chembiol.2022.10.004. Epub 2022 Oct 24.
3
A higher spectral range of beetle bioluminescence with infraluciferin.
Front Bioeng Biotechnol. 2022 Aug 26;10:897272. doi: 10.3389/fbioe.2022.897272. eCollection 2022.
4
Multiplexed bioluminescence microscopy via phasor analysis.
Nat Methods. 2022 Jul;19(7):893-898. doi: 10.1038/s41592-022-01529-9. Epub 2022 Jun 23.
5
Near-Infrared Bioluminescence Imaging of Macrophage Sensors for Cancer Detection .
Front Bioeng Biotechnol. 2022 May 9;10:867164. doi: 10.3389/fbioe.2022.867164. eCollection 2022.
6
Multiplexed bioluminescence-mediated tracking of DNA double-strand break repairs in vitro and in vivo.
Nat Protoc. 2021 Aug;16(8):3933-3953. doi: 10.1038/s41596-021-00564-8. Epub 2021 Jun 23.
7
Emerging tools for bioluminescence imaging.
Curr Opin Chem Biol. 2021 Aug;63:86-94. doi: 10.1016/j.cbpa.2021.02.005. Epub 2021 Mar 23.
8
Applications of bioluminescence in biotechnology and beyond.
Chem Soc Rev. 2021 May 7;50(9):5668-5705. doi: 10.1039/d0cs01492c. Epub 2021 Mar 18.
9
Rapid Multicomponent Bioluminescence Imaging Substrate Unmixing.
ACS Chem Biol. 2021 Apr 16;16(4):682-690. doi: 10.1021/acschembio.0c00959. Epub 2021 Mar 17.
10
Orthogonal Bioluminescent Probes from Disubstituted Luciferins.
Biochemistry. 2021 Mar 2;60(8):563-572. doi: 10.1021/acs.biochem.0c00894. Epub 2021 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验