Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States.
Oak Ridge Associated Universities, Oak Ridge, Tennessee 37830, United States.
Acc Chem Res. 2023 Jul 4;56(13):1720-1730. doi: 10.1021/acs.accounts.3c00090. Epub 2023 Jun 22.
ConspectusThe atmosphere-biosphere exchange of nitrogen oxides plays a key role in determining the composition of reactive nitrogen in terrestrial vegetated environments. The emission of nitric oxide (NO) from soils is an important atmospheric source of reactive nitrogen. NO is rapidly interconverted with NO, making up the chemical family NO (NO ≡ NO + NO). NO further reacts with the oxidation products of volatile organic compounds (VOCs) to form the functionalized nitrogen oxide groups acyl peroxynitrates (APNs = R(O)ONO) and alkyl nitrates (ANs = RONO). Both canopy-level field measurements and laboratory studies suggest that the absorption of nitrogen dioxide NO and APNs by vegetation is a significant sink of atmospheric NO, removing a large fraction of global soil-emitted NO and providing key control on the amounts and lifetimes of NO and reactive nitrogen in the atmosphere. Nitrogen oxides influence the production of surface O and secondary aerosols. The balance of the emission and uptake of nitrogen oxides thus provides a mechanism for the regulation of regional air quality. The biosphere, via this biogeochemical cycling of nitrogen oxides, is becoming an increasingly important determining factor for airborne pollutants as much of the world continues to reduce the amount of combustion-related nitrogen oxide emissions. Understanding the function of the biosphere as a source and sink of reactive nitrogen is therefore ever more critical in evaluating the effects of future and current emissions of nitrogen oxides on human and ecosystem health.Laboratory measurements of the foliar deposition of NO and other reactive nitrogen species suggest that there is a substantial diversity of uptake rates under varying environmental conditions and for different species of vegetation that is not currently reflected in the widely utilized chemical transport models. Our branch chamber measurements on a wide variety of North American tree species highlight the variability in the rates of both photosynthesis and nitrogen oxide deposition among several different nitrogen oxide compounds. Box-modeling and satellite measurement approaches demonstrate how disparities between our understanding of nitrogen oxide foliar exchange in the laboratory and what is represented in models can lead to misrepresentations of the net ecosystem exchange of nitrogen. This has important implications for assumptions of in-canopy chemistry, soil emissions of NO, canopy reductions of NO, lifetimes of trace gases, and the impact of the biosphere on air quality.
概述
氮氧化物在大气-生物圈交换中起着关键作用,决定了陆地植被环境中活性氮的组成。一氧化氮(NO)从土壤中的排放是大气中活性氮的一个重要来源。NO 可迅速与 NO 相互转化,构成化学家族 NO(NO≡NO+NO)。NO 进一步与挥发性有机化合物(VOCs)的氧化产物反应,形成官能化的氮氧化物基团酰过氧亚硝酸盐(APNs=R(O)ONO)和烷基硝酸盐(ANs=RONO)。田间冠层水平的测量和实验室研究都表明,植被对二氧化氮(NO2)和 APNs 的吸收是大气中 NO 的一个重要汇,去除了全球土壤排放的大量 NO,并对大气中 NO 和活性氮的数量和寿命提供关键控制。氮氧化物影响表面 O 和二次气溶胶的产生。氮氧化物的排放和吸收平衡为调节区域空气质量提供了一种机制。随着世界上许多地区继续减少与燃烧有关的氮氧化物排放量,生物圈通过氮氧化物的这种生物地球化学循环,正在成为空气污染物的一个越来越重要的决定因素。因此,了解生物圈作为活性氮源和汇的功能,对于评估未来和当前氮氧化物排放对人类和生态系统健康的影响变得至关重要。
实验室对叶片中 NO 和其他活性氮物种的沉积测量表明,在不同的环境条件下和不同的植被物种中,吸收速率存在很大的多样性,而这在广泛使用的化学输送模型中并没有得到反映。我们对多种北美树种的分支室测量突出了几种不同氮氧化物化合物的光合作用和氮氧化物沉积速率的可变性。箱式模型和卫星测量方法表明,我们在实验室中对氮氧化物叶片交换的理解与模型所代表的情况之间的差异如何导致对氮净生态系统交换的错误表示。这对树冠内化学物质、NO 的土壤排放、NO 的树冠减少、痕量气体的寿命以及生物圈对空气质量的影响等方面的假设都有重要影响。