Yang Jian, Li Jiabao, Lu Jiahui, Sheng Xiaoxue, Liu Yu, Wang Tianyi, Wang Chengyin
Institute for Innovative Materials and Energy, Faculty of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, China; Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
Institute for Innovative Materials and Energy, Faculty of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, China.
J Colloid Interface Sci. 2023 Nov;649:234-244. doi: 10.1016/j.jcis.2023.06.110. Epub 2023 Jun 17.
Antimony selenide (SbSe), with rich resources and high electrochemical activity, including in conversion and alloying reactions, has been regarded as an ideal candidate anode material for sodium-ion batteries. However, the severe volume expansion, sluggish kinetics, and polyselenide shuttle of the SbSe-based anode lead to serious pulverization at high current density, restricting its industrialization. Herein, a unique structure of SbSe nanowires uniformly anchored between TiCT (MXene) nanosheets was prepared by the electrostatic self-assembly method. The MXene can impede the volume expansion of SbSe nanowires in the sodiation process. Moreover, the SbSe nanowires can reduce the restacking of TiCT nanosheets and enhance electrolyte accessibility. Furthermore, density functional theory calculations confirm the increased reaction kinetics and better sodium storage capability through the composite of TiCT with SbSe and the high adsorption capability of TiCT to polyselenides. Therefore, the resultant SbSe/TiCT anodes show high rate capability (369.4 mAh/g at 5 A/g) and cycling performance (568.9 and 304.1 mAh/g at 0.1 A/g after 100 cycles and at 1.0 A/g after 500 cycles). More importantly, the full sodium-ion batteries using the SbSe/TiCT anode and NaV(PO)/carbon cathode exhibit high energy/power densities and outstanding cycle performance.
硒化锑(SbSe)资源丰富且具有高电化学活性,包括在转化和合金化反应中,被视为钠离子电池理想的负极候选材料。然而,基于SbSe的负极存在严重的体积膨胀、缓慢的动力学以及多硒化物穿梭效应,导致在高电流密度下严重粉化,限制了其工业化应用。在此,通过静电自组装法制备了一种独特结构的SbSe纳米线均匀锚定在TiCT(MXene)纳米片之间。MXene能够在钠化过程中阻碍SbSe纳米线的体积膨胀。此外,SbSe纳米线可以减少TiCT纳米片的重新堆叠并提高电解质可及性。此外,密度泛函理论计算证实,通过TiCT与SbSe的复合以及TiCT对多硒化物的高吸附能力,反应动力学增加且储钠能力更好。因此,所得的SbSe/TiCT负极表现出高倍率性能(5 A/g时为369.4 mAh/g)和循环性能(0.1 A/g下100次循环后为568.9 mAh/g,1.0 A/g下500次循环后为304.1 mAh/g)。更重要的是,使用SbSe/TiCT负极和NaV(PO)/碳正极的全钠离子电池展现出高能量/功率密度以及出色的循环性能。