Suppr超能文献

缺乏 FGF15/19-SHP 磷酸化的转基因小鼠表现出胆汁酸和肠道细菌的改变,促进非酒精性脂肪性肝病。

Transgenic mice lacking FGF15/19-SHP phosphorylation display altered bile acids and gut bacteria, promoting nonalcoholic fatty liver disease.

机构信息

Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.

Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin-Madison, Madison, Wisconsin, USA.

出版信息

J Biol Chem. 2023 Aug;299(8):104946. doi: 10.1016/j.jbc.2023.104946. Epub 2023 Jun 20.

Abstract

Dysregulated bile acid (BA)/lipid metabolism and gut bacteria dysbiosis are tightly associated with the development of obesity and non-alcoholic fatty liver disease (NAFLD). The orphan nuclear receptor, Small Heterodimer Partner (SHP/NR0B2), is a key regulator of BA/lipid metabolism, and its gene-regulating function is markedly enhanced by phosphorylation at Thr-58 mediated by a gut hormone, fibroblast growth factor-15/19 (FGF15/19). To investigate the role of this phosphorylation in whole-body energy metabolism, we generated transgenic SHP-T58A knock-in mice. Compared with wild-type (WT) mice, the phosphorylation-defective SHP-T58A mice gained weight more rapidly with decreased energy expenditure and increased lipid/BA levels. This obesity-prone phenotype was associated with the upregulation of lipid/BA synthesis genes and downregulation of lipophagy/β-oxidation genes. Mechanistically, defective SHP phosphorylation selectively impaired its interaction with LRH-1, resulting in de-repression of SHP/LRH-1 target BA/lipid synthesis genes. Remarkably, BA composition and selective gut bacteria which are known to impact obesity, were also altered in these mice. Upon feeding a high-fat diet, fatty liver developed more severely in SHP-T58A mice compared to WT mice. Treatment with antibiotics substantially improved the fatty liver phenotypes in both groups but had greater effects in the T58A mice so that the difference between the groups was largely eliminated. These results demonstrate that defective phosphorylation at a single nuclear receptor residue can impact whole-body energy metabolism by altering BA/lipid metabolism and gut bacteria, promoting complex metabolic disorders like NAFLD. Since posttranslational modifications generally act in gene- and context-specific manners, the FGF15/19-SHP phosphorylation axis may allow more targeted therapy for NAFLD.

摘要

胆汁酸(BA)/脂质代谢失调和肠道菌群失调与肥胖和非酒精性脂肪性肝病(NAFLD)的发展密切相关。孤儿核受体小异二聚体伴侣(SHP/NR0B2)是 BA/脂质代谢的关键调节剂,其基因调节功能通过肠道激素成纤维细胞生长因子 15/19(FGF15/19)介导的 Thr-58 磷酸化显著增强。为了研究这种磷酸化在全身能量代谢中的作用,我们生成了 SHP-T58A 敲入转基因小鼠。与野生型(WT)小鼠相比,磷酸化缺陷的 SHP-T58A 小鼠体重增加更快,能量消耗减少,脂质/BA 水平增加。这种易肥胖表型与脂质/BA 合成基因上调和脂噬/β-氧化基因下调有关。机制上,SHP 磷酸化缺陷选择性地损害了其与 LRH-1 的相互作用,导致 SHP/LRH-1 靶 BA/脂质合成基因去抑制。值得注意的是,这些小鼠的 BA 组成和选择性肠道细菌也发生了变化,这些细菌已知会影响肥胖。高脂饮食喂养后,SHP-T58A 小鼠的脂肪肝比 WT 小鼠更为严重。抗生素治疗在两组中均显著改善了脂肪肝表型,但在 T58A 小鼠中的效果更大,以至于两组之间的差异基本消除。这些结果表明,单个核受体残基的磷酸化缺陷可以通过改变 BA/脂质代谢和肠道细菌来影响全身能量代谢,促进复杂的代谢紊乱,如 NAFLD。由于翻译后修饰通常以基因和上下文特异性的方式发挥作用,FGF15/19-SHP 磷酸化轴可能为 NAFLD 提供更有针对性的治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee86/10359637/f57dda0a4cd3/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验