Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
Environ Res. 2023 Sep 15;233:116466. doi: 10.1016/j.envres.2023.116466. Epub 2023 Jun 21.
In this research study, a novel method, an in-situ growth approach, to incorporate metal-organic framework (MOF) into carrageenan-grafted- polyacrylamide-FeO substrate was introduced. Carrageenan-grafted-polyacrylamide-FeO/MOF nanocomposite (kC-g-PAAm@FeO-MOF-199) was fabricated utilizing three stages. In this way, the polyacrylamide (PAAm) was grafted onto the carrageenan (kC) backbone via free radical polymerization in the presence of methylene bisacrylamide (MBA) as cross-linker and FeO magnetic nanoparticles. Next, the kC-g-PAAm@FeO was modified by MOF-199 via an in-situ solvothermal approach. Several analyses such as Fourier transform infrared spectroscopy (FT-IR), X-Ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-Dispersive X-ray Spectroscopy (EDX), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), Brunauer-Emmett-Teller (BET) demonstrated the successful synthesis of kC-g-PAAm@FeO-MOF-199 magnetic hydrogel nanocomposite. The XRD pattern of magnetic hydrogel nanocomposite illustrated characteristic peaks of FeO neat kC, and MOF-199 with enhanced crystallinity in comparison with kC-g-PAAm@FeO. TGA showed it has a char yield of 24 wt% at 800 °C. VSM confirmed its superparamagnetic behavior (with Ms of 8.04 emu g), and the BET surface area of kC-g-PAAm@FeO-MOF-199 was measured at 64.864 m g, which was higher than that of kC-g-PAAm@FeO due to the highly porous MOF-199 incorporation with a BET surface area of 905.12 m g). The adsorption effectiveness of kC-g-PAAm@FeO-MOF-199 for eliminating cephalosporin and quinolones antibiotics, i.e., Cefixime (CFX) and Levofloxacin (LEV) from the aquatic area was considered. Several experimental setups were used to evaluate the efficacy of adsorption, such as solution pH, amount of adsorbent, contact duration, and initial concentration. The maximum adsorption capacity (Q) of the prepared magnetic hydrogel nanocomposite was found to be 2000 and 1666.667 mg for LEV and CFX using employing 0.0025 g of adsorbent. The Freundlich isotherm model well described the experimental adsorption data with R = 0.9986, and R = 0.9939. And the adsorption kinetic data were successfully represented by the pseudo-second-order model with R = 0.9949 and R = 0.9906. Hydrogen bonding, π-π interaction, diffusion, and entrapment in the hydrogel network all contributed to the successful adsorption of both antibiotics onto the kC-g-PAAm@FeO-MOF-199 adsorbent. Other notable physicochemical properties include the three-dimensional structure and availability of the reactive adsorption sites. Moreover, the adsorption/desorption efficacy of magnetic hydrogel nanocomposites was not significantly diminished after four cycles of recovery.
在这项研究中,引入了一种将金属有机骨架(MOF)原位生长到卡拉胶接枝聚丙酰胺-FeO 基质中的新方法。通过三个阶段制备了卡拉胶接枝聚丙酰胺-FeO/ MOF 纳米复合材料(kC-g-PAAm@FeO-MOF-199)。通过这种方式,聚丙烯酰胺(PAAm)通过存在亚甲基双丙烯酰胺(MBA)作为交联剂和 FeO 磁性纳米粒子的自由基聚合接枝到卡拉胶(kC)主链上。接下来,通过原位溶剂热方法用 MOF-199 对 kC-g-PAAm@FeO 进行修饰。傅里叶变换红外光谱(FT-IR)、X 射线衍射(XRD)、场发射扫描电子显微镜(FESEM)、能量色散 X 射线光谱(EDX)、热重分析(TGA)、振动样品磁强计(VSM)、Brunauer-Emmett-Teller(BET)等多种分析表明,成功合成了 kC-g-PAAm@FeO-MOF-199 磁性水凝胶纳米复合材料。磁性水凝胶纳米复合材料的 XRD 图谱显示了 FeO 纯 kC 和 MOF-199 的特征峰,与 kC-g-PAAm@FeO 相比,结晶度增强。TGA 表明,在 800°C 时其具有 24 wt%的残炭率。VSM 证实了其超顺磁性行为(Ms 为 8.04 emu g),并且 kC-g-PAAm@FeO-MOF-199 的 BET 表面积为 64.864 m g,高于 kC-g-PAAm@FeO,因为高度多孔的 MOF-199 的 BET 表面积为 905.12 m g)。研究了 kC-g-PAAm@FeO-MOF-199 对从水相中去除头孢菌素和喹诺酮类抗生素(即头孢克肟(CFX)和左氧氟沙星(LEV))的吸附效果。使用了几种实验装置来评估吸附效果,例如溶液 pH 值、吸附剂用量、接触时间和初始浓度。发现制备的磁性水凝胶纳米复合材料的最大吸附容量(Q)对于 LEV 和 CFX 分别为 2000 和 1666.667 mg,使用 0.0025 g 的吸附剂。Freundlich 等温线模型很好地描述了实验吸附数据,R 2 = 0.9986,R 2 = 0.9939。吸附动力学数据通过准二级模型成功表示,R 2 = 0.9949,R 2 = 0.9906。氢键、π-π 相互作用、扩散和水凝胶网络中的包埋都有助于两种抗生素成功吸附到 kC-g-PAAm@FeO-MOF-199 吸附剂上。其他值得注意的物理化学性质包括三维结构和反应性吸附位点的可用性。此外,磁性水凝胶纳米复合材料的吸附/解吸效率在经过四次回收循环后并未明显降低。
Int J Biol Macromol. 2024-10