State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
ACS Nano. 2023 Jul 11;17(13):12629-12640. doi: 10.1021/acsnano.3c03028. Epub 2023 Jun 23.
Dehydration is a basic phenomenon in ion transport through confined nanochannels, but how it affects ion trans-membrane selectivity has not been understood due to a lack of characterization techniques and suitable pore structures. Herein, hydration number distributions of typical alkali metal ions were characterized by combining uniform subnanochannels of ZIF-8-based membranes with the liquid time-of-flight secondary ion mass spectrometry (ToF-SIMS) technique, revealing that steric hindrance induced ion dehydration through neutral confined ZIF-8 windows. The reduction in size due to partial dehydration increased the intrapore velocity for monovalent cations. The highest entropy value with maximum size changes resulting from dehydration drove fast and efficient selective transport of Li over other alkaline metal ions, leading to a Li/Rb selectivity of 5.2. The dehydration at the entrance of membrane pores was shown to account for the majority of overall barriers, being a dominant element for ion transport. High hydration energy (>1500 kJ/mol) hindered the dehydration and transport of typical alkaline earth metal ions, achieving ultrahigh monovalent/bivalent cation selectivity (∼10). These findings uncover the crucial role of dehydration energy barriers and size-based entropy barriers in ion selectivity of trans-subnanochannel transport, providing guidelines for designing selective membranes with specific pore sizes to promote the dehydration of desired solutes.
脱水是离子通过受限纳米通道传输的基本现象,但由于缺乏表征技术和合适的孔结构,它如何影响离子跨膜选择性仍不清楚。在此,通过将基于 ZIF-8 的膜的均匀亚纳米通道与液体飞行时间二次离子质谱 (ToF-SIMS) 技术相结合,对典型碱金属离子的水合数分布进行了表征,揭示了空间位阻通过中性受限 ZIF-8 窗口诱导离子脱水。由于部分脱水导致的尺寸减小增加了单价阳离子在孔内的速度。脱水导致的最大尺寸变化和最大熵值驱动 Li 相对于其他碱金属离子的快速高效选择性传输,导致 Li/Rb 选择性为 5.2。膜孔入口处的脱水被证明是总势垒的主要组成部分,是离子传输的主要因素。高水合能 (>1500 kJ/mol) 阻碍了典型的碱土金属离子的脱水和传输,实现了超高单价/二价阳离子选择性(~10)。这些发现揭示了脱水能垒和基于尺寸的熵垒在跨亚纳米通道传输中对离子选择性的关键作用,为设计具有特定孔径的选择性膜以促进所需溶质的脱水提供了指导。