Fang Yuxin, Li Ling, Sui Mingrui, Jiang Qianzhi, Dong Na, Shan Anshan, Jiang Junguang
Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
The State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130021, PR China.
ACS Nano. 2023 Jul 11;17(13):12247-12265. doi: 10.1021/acsnano.3c00765. Epub 2023 Jun 23.
Cells penetrating molecules in living systems hold promise of capturing and eliminating threats and damage that can plan intracellular fate promptly. However, it remains challenging to construct cell penetration systems that are physiologically stable with predictable self-assembly behavior and well-defined mechanisms. In this study, we develop a core-shell nanoparticle using a hyaluronic acid (HA)-coated protein transduction domain (PTD) derived from the human immunodeficiency virus (HIV). This nanoparticle can encapsulate pathogens, transporting the PTD into macrophages via lipid rafts. PTD forms hydrogen bonds with the components of the membrane through TAT, which has a high density of positive charges and reduces the degree of membrane order through Tryptophan (Trp)-zipper binding to the acyl tails of phospholipid molecules. HA-encapsulated PTD increases the resistance to trypsin and proteinase K, thereby penetrating macrophages and eliminating intracellular infections. Interestingly, the nonagglutination mechanism of PTD against pathogens ensures the safe operation of the cellular system. Importantly, PTD can activate the critical pathway of antiferroptosis in macrophages against pathogen infection. The nanoparticles developed in this study demonstrate safety and efficacy against Gram-negative and Gram-positive pathogens in three animal models. Overall, this work highlights the effectiveness of the PTD nanoparticle in encapsulating pathogens and provides a paradigm for transduction systems-anti-intracellular infection therapy.
活体细胞穿透分子有望捕获并消除那些能迅速决定细胞内命运的威胁与损伤。然而,构建具有生理稳定性、可预测的自组装行为及明确作用机制的细胞穿透系统仍然具有挑战性。在本研究中,我们利用源自人类免疫缺陷病毒(HIV)的透明质酸(HA)包被的蛋白转导结构域(PTD)开发了一种核壳纳米颗粒。这种纳米颗粒能够包裹病原体,通过脂筏将PTD转运至巨噬细胞内。PTD通过TAT与膜成分形成氢键,TAT带有高密度正电荷,并通过色氨酸(Trp)拉链与磷脂分子的酰基尾部结合来降低膜的有序度。HA包被的PTD增强了对胰蛋白酶和蛋白酶K的抗性,从而穿透巨噬细胞并消除细胞内感染。有趣的是,PTD对病原体的非凝集机制确保了细胞系统的安全运行。重要的是,PTD可激活巨噬细胞中抗铁死亡的关键途径以抵抗病原体感染。本研究中开发的纳米颗粒在三种动物模型中对革兰氏阴性和革兰氏阳性病原体均显示出安全性和有效性。总体而言,这项工作突出了PTD纳米颗粒在包裹病原体方面的有效性,并为转导系统——抗细胞内感染治疗提供了范例。