Zhang Xinyuan, Almasian Milad, Hassan Sohail S, Jotheesh Rosemary, Kadam Vinay A, Polk Austin R, Saberigarakani Alireza, Rahat Aayan, Yuan Jie, Lee Juhyun, Carroll Kelli, Ding Yichen
Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas 75080, USA.
Department of Computer Science, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas 75080, USA.
APL Bioeng. 2023 Jun 15;7(2):026112. doi: 10.1063/5.0153214. eCollection 2023 Jun.
Despite ongoing efforts in cardiovascular research, the acquisition of high-resolution and high-speed images for the purpose of assessing cardiac contraction remains challenging. Light-sheet fluorescence microscopy (LSFM) offers superior spatiotemporal resolution and minimal photodamage, providing an indispensable opportunity for the study of cardiac micro-structure and contractile function in zebrafish larvae. To track the myocardial architecture and contractility, we have developed an imaging strategy ranging from LSFM system construction, retrospective synchronization, single cell tracking, to user-directed virtual reality (VR) analysis. Our system enables the four-dimensional (4D) investigation of individual cardiomyocytes across the entire atrium and ventricle during multiple cardiac cycles in a zebrafish larva at the cellular resolution. To enhance the throughput of our model reconstruction and assessment, we have developed a parallel computing-assisted algorithm for 4D synchronization, resulting in a nearly tenfold enhancement of reconstruction efficiency. The machine learning-based nuclei segmentation and VR-based interaction further allow us to quantify cellular dynamics in the myocardium from end-systole to end-diastole. Collectively, our strategy facilitates noninvasive cardiac imaging and user-directed data interpretation with improved efficiency and accuracy, holding great promise to characterize functional changes and regional mechanics at the single cell level during cardiac development and regeneration.
尽管心血管研究一直在努力,但获取用于评估心脏收缩的高分辨率和高速图像仍然具有挑战性。光片荧光显微镜(LSFM)提供了卓越的时空分辨率和最小的光损伤,为研究斑马鱼幼体的心脏微观结构和收缩功能提供了不可或缺的机会。为了追踪心肌结构和收缩性,我们开发了一种成像策略,涵盖从LSFM系统构建、回顾性同步、单细胞追踪到用户导向的虚拟现实(VR)分析。我们的系统能够在细胞分辨率下,对斑马鱼幼体多个心动周期内整个心房和心室的单个心肌细胞进行四维(4D)研究。为了提高我们模型重建和评估的通量,我们开发了一种用于4D同步的并行计算辅助算法,使重建效率提高了近十倍。基于机器学习的细胞核分割和基于VR的交互进一步使我们能够量化心肌从收缩末期到舒张末期的细胞动力学。总的来说,我们的策略有助于进行无创心脏成像和用户导向的数据解读,提高了效率和准确性,有望在心脏发育和再生过程中在单细胞水平上表征功能变化和区域力学特性。
J Vis Exp. 2024-1-5
Prog Biophys Mol Biol. 2018-5-9
J Biophotonics. 2023-5
Front Cardiovasc Med. 2021-6-9
J Vis Exp. 2024-3-29
J Vis Exp. 2024-1-5
Nat Rev Methods Primers. 2023
Front Virtual Real. 2022-2
Biophys Rev (Melville). 2023-3
J Biophotonics. 2023-5
Curr Cardiol Rep. 2022-12
Annu Rev Biomed Eng. 2022-6-6
Front Cardiovasc Med. 2022-1-10
Front Cell Dev Biol. 2021-5-20