Suppr超能文献

自动特征选择,用于完成轮式体操中的第 2 单元。

Automatic feature selection for performing Unit 2 of vault in wheel gymnastics.

机构信息

Graduate School of Engineering and Science, University of the Ryukyus, Nakagami, Okinawa, Japan.

Department of Media Information Engineering, National Institute of Technology, Okinawa College, Nago, Okinawa, Japan.

出版信息

PLoS One. 2023 Jun 23;18(6):e0287095. doi: 10.1371/journal.pone.0287095. eCollection 2023.

Abstract

We propose a framework to analyze the relationship between the movement features of a wheel gymnast around the mounting phase of Unit 2 of the vault event and execution (E-score) deductions from a machine-learning perspective. We first developed an automation system from a video of a wheel gymnast performing a tuck-front somersault to extract the four frames highlighting its Unit 2 performance of the vault event, such as take-off, pike-mount, the starting point of time on the wheel, and final position before the thrust. We implemented this automation using recurrent all-pairs field transforms (RAFT) and XMem, i.e., deep network architectures respectively for optical flow estimation and video object segmentation. We then used a markerless pose-estimation system called OpenPose to acquire the coordinates of the gymnast's body joints, such as shoulders, hips, and knees then calculate the joint angles at the extracted video frames. Finally, we constructed a regression model to estimate the E-score deductions during Unit 2 on the basis of the joint angles using an ensemble learning algorithm called Random Forests, with which we could automatically select a small number of features with the nonzero values of feature importances. By applying our framework of markerless motion analysis to videos of male wheel gymnasts performing the vault, we achieved precise estimation of the E-score deductions during Unit 2 with a determination coefficient of 0.79. We found the two movement features of particular importance for them to avoid significant deductions: time on the wheel and angles of knees at the pike-mount position. The selected features well reflected the maturity of the gymnast's skills related to the motions of riding the wheel, easily noticeable to the judges, and their branching conditions were almost consistent with the general vault regulations.

摘要

我们提出了一个从机器学习角度分析轮式体操运动员在跳马项目第二单元安装阶段的运动特征与执行(E 分)扣分之间关系的框架。我们首先从轮式体操运动员进行前屈前空翻的视频中开发了一个自动化系统,以提取突出其跳马项目第二单元表现的四个关键帧,如起跳、俯撑、开始在轮上的时间和推力前的最终位置。我们使用递归全对场变换(RAFT)和 XMem 分别实现了这个自动化系统,即用于光流估计和视频对象分割的深度网络架构。然后,我们使用了一种名为 OpenPose 的无标记姿势估计系统来获取体操运动员身体关节的坐标,如肩膀、臀部和膝盖,然后在提取的视频帧上计算关节角度。最后,我们构建了一个回归模型,基于关节角度使用称为随机森林的集成学习算法来估计第二单元的 E 分扣分,从而可以自动选择具有非零特征重要性值的少数特征。通过将我们的无标记运动分析框架应用于男性轮式体操运动员的跳马视频,我们实现了对第二单元 E 分扣分的精确估计,决定系数为 0.79。我们发现了两个对他们避免重大扣分特别重要的运动特征:在轮上的时间和俯撑位置的膝盖角度。所选特征很好地反映了体操运动员与骑轮运动相关的技能成熟度,容易被裁判员注意到,并且它们的分支条件几乎与一般跳马规则一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2730/10289312/64c32c406577/pone.0287095.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验