Suppr超能文献

线上寻亲密关系:成功预测因素的机器学习分析。

Finding Intimacy Online: A Machine Learning Analysis of Predictors of Success.

机构信息

Department of Psychology, University of Picardie Jules Verne, Amiens, France.

Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA.

出版信息

Cyberpsychol Behav Soc Netw. 2023 Aug;26(8):604-612. doi: 10.1089/cyber.2022.0367. Epub 2023 Jun 23.

Abstract

While an extensive scientific literature now exists on the use of online dating services, there are very few studies on user satisfaction with dating apps and with the resulting offline dates. This study aimed to assess the level of satisfaction with Tinder use (STU) and the level of satisfaction with Tinder offline dates (STOD) in a sample of adult users of the app. The study also aimed to examine, among 28 variables, those that are the most important in predicting STU and STOD. Overall, 1,387 Tinder users completed an online questionnaire. A machine learning model was used to rank order predictors from most to least important. On a 4-point scale, participants' mean STU score was 2.39, and, on a 5-point scale, mean STOD score was 3.05. The results indicate that satisfaction with dating apps and with resulting offline dates is strongly predicted by participants' age and by their motives for using Tinder (enhancement, emotional coping, socialization, finding "true love," or casual sexual partners), whereas the variables negatively associated with satisfaction were those related to psychopathology. Interestingly, 65.3 percent of app users were married or "in a relationship," and only 50.3 percent of app users were using it to meet someone offline. Generally, participants who engage with the app to cope with personal difficulties seem more likely to report higher levels of dissatisfaction, suggesting that dating apps are a poor coping mechanism and highlighting the need to address underlying problems or pathologies that may be driving their use.

摘要

虽然现在已经有大量关于在线约会服务使用的科学文献,但关于用户对约会应用程序的满意度以及由此产生的线下约会的研究却很少。本研究旨在评估 Tinder 用户满意度 (STU) 和 Tinder 线下约会满意度 (STOD) 在应用程序成年用户样本中的水平。该研究还旨在检查 28 个变量中的那些最重要的变量,以预测 STU 和 STOD。总的来说,有 1387 名 Tinder 用户完成了在线问卷。使用机器学习模型对预测因素进行了从最重要到最不重要的排序。参与者的平均 STU 得分为 2.39(4 分制),平均 STOD 得分为 3.05(5 分制)。结果表明,对约会应用程序和由此产生的线下约会的满意度强烈取决于参与者的年龄以及他们使用 Tinder 的动机(增强、情绪应对、社交、寻找“真爱”或随意性伴侣),而与满意度呈负相关的变量与精神病理学有关。有趣的是,65.3%的应用程序用户已婚或“处于恋爱关系”,只有 50.3%的应用程序用户使用它在线下约会。总的来说,那些通过使用应用程序来应对个人困难的用户似乎更有可能报告更高水平的不满,这表明约会应用程序是一种不良的应对机制,并强调了需要解决可能推动他们使用的潜在问题或病理学。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验