Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan.
Research Center for Nuclear Physics, Osaka University, Suita, Osaka, Japan.
Phys Med Biol. 2023 Jul 19;68(15). doi: 10.1088/1361-6560/ace14c.
. Estimation of the probability density of the microdosimetric quantities in macroscopic matter is indispensable for applying the concept of microdosimetry to medical physics and radiological protection. The Particle and Heavy Ion Transport code System (PHITS) enables estimating the microdosimetric probability densities due to its unique hybrid modality between the Monte Carlo and analytical approaches called the microdosimetric function. It can convert the deposition energies calculated by the macroscopic Monte Carlo radiation transport simulation to microdosimetric probability densities in water using an analytical function based on the track-structure simulations.. In this study, we improved this function using the latest track-structure simulation codes implemented in PHITS. The improved function is capable of calculating the probability densities of not only the conventional microdosimetric quantities such as lineal energy but also the number of ionization events occurring in a target site, the so-called ionization cluster size distribution, for arbitrary site diameters from 3 nm to 1m.. The accuracy of the improved function was well verified by comparing the microdosimetric probability densities measured by tissue-equivalent proportional counters with the corresponding data calculated in this study. Test calculations for clonogenic cell survival using the improved function coupled with the modified microdosimetric kinetic model suggested a slight increase of its relative biological effectiveness compared with our previous estimations. As a new application of the improved function, we calculated the relative biological effectiveness of the single-strand break and double-strand break yields for proton irradiations using the updated PHITS coupled with the simplified DNA damage estimation model, and confirmed its equivalence in accuracy and its superiority in computational time compared to our previously proposed method based on the track-structure simulation.. From these features, we concluded that the improved function could expand the application fields of PHITS by bridging the gap between microdosimetry and macrodosimetry.
. 估计宏观物质中微剂量学数量的概率密度对于将微剂量学概念应用于医学物理学和放射防护是必不可少的。粒子和重离子输运代码系统 (PHITS) 通过其独特的蒙特卡罗和分析方法之间的混合模式,即微剂量函数,能够估计微剂量概率密度。它可以使用基于轨迹结构模拟的分析函数,将宏观蒙特卡罗辐射输运模拟计算的沉积能量转换为水中的微剂量概率密度。在这项研究中,我们使用 PHITS 中实现的最新轨迹结构模拟代码改进了这个函数。该改进的函数不仅能够计算线性能量等传统微剂量学数量的概率密度,还能够计算目标点处发生的电离事件数量的概率密度,即所谓的电离簇大小分布,对于任意直径从 3nm 到 1m 的目标点。通过将组织等效比例计数器测量的微剂量概率密度与本研究中计算的相应数据进行比较,验证了改进函数的准确性。使用改进的函数与修正的微剂量动力学模型相结合进行的克隆形成细胞存活的测试计算表明,与我们之前的估计相比,其相对生物效应略有增加。作为改进函数的新应用,我们使用更新的 PHITS 结合简化的 DNA 损伤估算模型计算了质子辐照的单链断裂和双链断裂产额的相对生物效应,并确认其在准确性和计算时间方面优于我们之前基于轨迹结构模拟的方法。从这些特点可以得出结论,改进的函数可以通过弥合微剂量学和宏观剂量学之间的差距,扩展 PHITS 的应用领域。