文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人源 TRPV4 与 GTP 酶 RhoA 复合物的结构。

Structure of human TRPV4 in complex with GTPase RhoA.

机构信息

Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA.

Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY, 10032, USA.

出版信息

Nat Commun. 2023 Jun 23;14(1):3733. doi: 10.1038/s41467-023-39346-z.


DOI:10.1038/s41467-023-39346-z
PMID:37353478
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10290124/
Abstract

Transient receptor potential (TRP) channel TRPV4 is a polymodal cellular sensor that responds to moderate heat, cell swelling, shear stress, and small-molecule ligands. It is involved in thermogenesis, regulation of vascular tone, bone homeostasis, renal and pulmonary functions. TRPV4 is implicated in neuromuscular and skeletal disorders, pulmonary edema, and cancers, and represents an important drug target. The cytoskeletal remodeling GTPase RhoA has been shown to suppress TRPV4 activity. Here, we present a structure of the human TRPV4-RhoA complex that shows RhoA interaction with the membrane-facing surface of the TRPV4 ankyrin repeat domains. The contact interface reveals residues that are mutated in neuropathies, providing an insight into the disease pathogenesis. We also identify the binding sites of the TRPV4 agonist 4α-PDD and the inhibitor HC-067047 at the base of the S1-S4 bundle, and show that agonist binding leads to pore opening, while channel inhibition involves a π-to-α transition in the pore-forming helix S6. Our structures elucidate the interaction interface between hTRPV4 and RhoA, as well as residues at this interface that are involved in TRPV4 disease-causing mutations. They shed light on TRPV4 activation and inhibition and provide a template for the design of future therapeutics for treatment of TRPV4-related diseases.

摘要

瞬时受体电位 (TRP) 通道 TRPV4 是一种多模式细胞传感器,可响应中等温度、细胞肿胀、切应力和小分子配体。它参与产热、血管张力调节、骨稳态、肾脏和肺功能。TRPV4 与神经肌肉和骨骼疾病、肺水肿和癌症有关,是一个重要的药物靶点。细胞骨架重塑 GTPase RhoA 已被证明可抑制 TRPV4 活性。在这里,我们展示了人 TRPV4-RhoA 复合物的结构,该结构显示 RhoA 与 TRPV4 锚蛋白重复结构域的面向膜表面相互作用。接触界面揭示了在神经病变中发生突变的残基,为疾病发病机制提供了深入了解。我们还确定了 TRPV4 激动剂 4α-PDD 和抑制剂 HC-067047 在 S1-S4 束底部的结合位点,并表明激动剂结合导致孔打开,而通道抑制涉及孔形成螺旋 S6 中的 π 到 α 转变。我们的结构阐明了 hTRPV4 和 RhoA 之间的相互作用界面,以及该界面中涉及 TRPV4 致病突变的残基。它们阐明了 TRPV4 的激活和抑制机制,并为设计治疗 TRPV4 相关疾病的未来治疗方法提供了模板。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ecc/10290124/ed15758167ac/41467_2023_39346_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ecc/10290124/73063abc67a2/41467_2023_39346_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ecc/10290124/fd75e7ebff33/41467_2023_39346_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ecc/10290124/a2496b3942cf/41467_2023_39346_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ecc/10290124/c1106b2b4c25/41467_2023_39346_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ecc/10290124/ed15758167ac/41467_2023_39346_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ecc/10290124/73063abc67a2/41467_2023_39346_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ecc/10290124/fd75e7ebff33/41467_2023_39346_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ecc/10290124/a2496b3942cf/41467_2023_39346_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ecc/10290124/c1106b2b4c25/41467_2023_39346_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ecc/10290124/ed15758167ac/41467_2023_39346_Fig5_HTML.jpg

相似文献

[1]
Structure of human TRPV4 in complex with GTPase RhoA.

Nat Commun. 2023-6-23

[2]
TRPV4-Rho GTPase complex structures reveal mechanisms of gating and disease.

Nat Commun. 2023-6-23

[3]
Structural insights into TRPV4-Rho GTPase signaling complex function and disease.

bioRxiv. 2023-3-16

[4]
Neuropathy-causing TRPV4 mutations disrupt TRPV4-RhoA interactions and impair neurite extension.

Nat Commun. 2021-3-4

[5]
TRPV4: A trigger of pathological RhoA activation in neurological disease.

Bioessays. 2022-6

[6]
TRPV4 channel activity is modulated by direct interaction of the ankyrin domain to PI(4,5)P₂.

Nat Commun. 2014-9-26

[7]
The structural changes of the mutated ankyrin repeat domain of the human TRPV4 channel alter its ATP binding ability.

J Mech Behav Biomed Mater. 2020-1

[8]
Structural and biochemical consequences of disease-causing mutations in the ankyrin repeat domain of the human TRPV4 channel.

Biochemistry. 2012-7-25

[9]
Single point mutations of aromatic residues in transmembrane helices 5 and -6 differentially affect TRPV4 activation by 4α-PDD and hypotonicity: implications for the role of the pore region in regulating TRPV4 activity.

Cell Calcium. 2013-11-21

[10]
Determinants of 4 alpha-phorbol sensitivity in transmembrane domains 3 and 4 of the cation channel TRPV4.

J Biol Chem. 2007-4-27

引用本文的文献

[1]
PIP2 regulation of TRPV4 channels: Binding sites and dynamic coupling.

Biophys J. 2025-8-6

[2]
Enhanced neuromorphogenesis of neural stem cells via the optimization of physical stimulus-responsive signaling pathways.

Stem Cell Res Ther. 2025-7-18

[3]
TRPV4 controls circadian and pathological ocular hypertension.

J Physiol. 2025-7

[4]
surface sulfoglycolipid SL-1 activates the mechanosensitive channel TRPV4 to enhance lysosomal biogenesis and exocytosis in macrophages.

Mol Biol Cell. 2025-6-1

[5]
A TRPV4-dependent calcium signaling axis governs lamellipodial actin architecture to promote cell migration.

bioRxiv. 2025-3-30

[6]
Calcium channels as pharmacological targets for cancer therapy.

Clin Exp Med. 2025-3-25

[7]
The Hunt for the Putative Epoxyeicosatrienoic Acid Receptor.

ACS Chem Biol. 2025-4-18

[8]
The structural basis of the G protein-coupled receptor and ion channel axis.

Curr Res Struct Biol. 2025-2-18

[9]
Structural insights into TRPV2 modulation by probenecid.

Nat Struct Mol Biol. 2025-2-19

[10]
Phosphorylation of distal C-terminal residues promotes TRPV4 channel activation in response to arachidonic acid.

J Biol Chem. 2025-3

本文引用的文献

[1]
Structural basis for mechanotransduction in a potassium-dependent mechanosensitive ion channel.

Nat Commun. 2022-11-12

[2]
Mechanotransduction in the spotlight of mechano-sensitive channels.

Curr Opin Plant Biol. 2022-8

[3]
Structural mechanism of TRPV3 channel inhibition by the anesthetic dyclonine.

Nat Commun. 2022-5-19

[4]
Mechanosensitive calcium flashes promote sustained RhoA activation during tight junction remodeling.

J Cell Biol. 2022-4-4

[5]
Structural mechanisms of TRPV6 inhibition by ruthenium red and econazole.

Nat Commun. 2021-11-1

[6]
TRPing on Cell Swelling - TRPV4 Senses It.

Front Immunol. 2021

[7]
Structural snapshots of TRPV1 reveal mechanism of polymodal functionality.

Cell. 2021-9-30

[8]
Structural mechanism of TRPV3 channel inhibition by the plant-derived coumarin osthole.

EMBO Rep. 2021-11-4

[9]
Structural mechanism of heat-induced opening of a temperature-sensitive TRP channel.

Nat Struct Mol Biol. 2021-7

[10]
Extracellular cap domain is an essential component of the TRPV1 gating mechanism.

Nat Commun. 2021-4-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索