Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii.
Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii; Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii.
Biophys J. 2023 Aug 8;122(15):3099-3107. doi: 10.1016/j.bpj.2023.06.014. Epub 2023 Jun 23.
Liquid ventilation is a mechanical ventilation technique in which the entire or part of the lung is filled with oxygenated perfluorocarbon (PFC) liquids rather than air in conventional mechanical ventilation. Despite its many ideal biophysicochemical properties for assisting liquid breathing, a general misconception about PFC is to use it as a replacement for pulmonary surfactant. Because of the high PFC-water interfacial tension (59 mN/m), pulmonary surfactant is indispensable in liquid ventilation to increase lung compliance. However, the biophysical function of pulmonary surfactant in liquid ventilation is still unknown. Here, we have studied the adsorption and dynamic surface activity of a natural surfactant preparation, Infasurf, at the PFC-water interface using constrained drop surfactometry. The constrained drop surfactometry is capable of simulating the intra-alveolar microenvironment of liquid ventilation under physiologically relevant conditions. It was found that Infasurf adsorbed to the PFC-water interface reduces the PFC-water interfacial tension from 59 mN/m to an equilibrium value of 9 mN/m within seconds. Atomic force microscopy revealed that after de novo adsorption, Infasurf forms multilayered structures at the PFC-water interface with an average thickness of 10-20 nm, depending on the adsorbing surfactant concentration. It was found that the adsorbed Infasurf film is capable of regulating the interfacial tension of the PFC-water interface within a narrow range, between ∼12 and ∼1 mN/m, during dynamic compression-expansion cycles that mimic liquid ventilation. These findings have novel implications in understanding the physiological and biophysical functions of the pulmonary surfactant film at the PFC-water interface, and may offer new translational insights into the development of liquid ventilation and liquid breathing techniques.
液体通气是一种机械通气技术,通过该技术,整个或部分肺用充氧的全氟碳化合物(PFC)液体代替常规机械通气中的空气进行填充。尽管 PFC 在辅助液体呼吸方面具有许多理想的生物物理化学特性,但人们对 PFC 的一个普遍误解是将其用作肺表面活性剂的替代品。由于 PFC-水的界面张力(59 mN/m)较高,因此在液体通气中,肺表面活性剂是必不可少的,可增加肺顺应性。然而,肺表面活性剂在液体通气中的生物物理功能仍不清楚。在这里,我们使用约束液滴表面张力法研究了天然表面活性剂制剂 InfaSurf 在 PFC-水界面的吸附和动态表面活性。约束液滴表面张力法能够在生理相关条件下模拟液体通气的肺泡内微环境。结果发现,InfaSurf 吸附到 PFC-水界面后,可在数秒内将 PFC-水界面张力从 59 mN/m降低至 9 mN/m 的平衡值。原子力显微镜显示,在重新吸附后,InfaSurf 在 PFC-水界面上形成多层结构,其平均厚度为 10-20nm,具体取决于吸附的表面活性剂浓度。结果发现,吸附的 InfaSurf 膜能够在模拟液体通气的动态压缩-扩张循环过程中,将 PFC-水界面的界面张力调节在 12-1mN/m 之间的狭窄范围内。这些发现对理解 PFC-水界面肺表面活性剂膜的生理和生物物理功能具有新颖的意义,并可能为液体通气和液体呼吸技术的发展提供新的转化见解。