Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii.
Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii; Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii.
Biophys J. 2023 May 16;122(10):1772-1780. doi: 10.1016/j.bpj.2023.04.010. Epub 2023 Apr 11.
Pulmonary surfactant is a lipid-protein complex that forms a thin film at the air-water surface of the lungs. This surfactant film defines the elastic recoil and respiratory mechanics of the lungs. One generally accepted rationale of using oxygenated perfluorocarbon (PFC) as a respiratory medium in liquid ventilation is to take advantage of its low surface tensions (14-18 mN/m), which was believed to make PFC an ideal replacement of the exogenous surfactant. Compared with the extensive studies of the phospholipid phase behavior of the pulmonary surfactant film at the air-water surface, its phase behavior at the PFC-water interface is essentially unknown. Here, we reported the first detailed biophysical study of phospholipid phase transitions in two animal-derived natural pulmonary surfactant films, Infasurf and Survanta, at the PFC-water interface using constrained drop surfactometry. Constrained drop surfactometry allows in situ Langmuir-Blodgett transfer from the PFC-water interface, thus permitting direct visualization of lipid polymorphism in pulmonary surfactant films using atomic force microscopy. Our data suggested that regardless of its low surface tension, the PFC cannot be used as a replacement of pulmonary surfactant in liquid ventilation where the air-water surface of the lungs is replaced with the PFC-water interface that features an intrinsically high interfacial tension. The pulmonary surfactant film at the PFC-water interface undergoes continuous phase transitions at surface pressures less than the equilibrium spreading pressure of 50 mN/m and a monolayer-to-multilayer transition above this critical pressure. These results provided not only novel biophysical insight into the phase behavior of natural pulmonary surfactant at the oil-water interface but also translational implications into the further development of liquid ventilation and liquid breathing techniques.
肺表面活性剂是一种脂质-蛋白质复合物,在肺的气-水表面形成一层薄膜。该表面活性剂膜定义了肺的弹性回弹和呼吸力学。使用含氧全氟化碳(PFC)作为液体通气中的呼吸介质的一个普遍接受的基本原理是利用其低表面张力(14-18 mN/m),这被认为使 PFC 成为外源性表面活性剂的理想替代品。与肺表面活性剂膜在气-水表面的磷脂相行为的广泛研究相比,其在 PFC-水界面的相行为基本上是未知的。在这里,我们使用约束滴表面张力法首次详细研究了两种动物源性天然肺表面活性剂膜(Infasurf 和 Survanta)在 PFC-水界面的磷脂相转变的生物物理特性。约束滴表面张力法允许从 PFC-水界面原位 Langmuir-Blodgett 转移,从而可以使用原子力显微镜直接观察肺表面活性剂膜中的脂质多晶型。我们的数据表明,无论其表面张力低,在液体通气中,PFC 都不能替代肺表面活性剂,因为液体通气中肺的气-水表面被 PFC-水界面取代,而 PFC-水界面具有内在的高界面张力。在低于平衡铺展压力 50 mN/m 的表面压力下,PFC-水界面的肺表面活性剂膜会发生连续的相转变,在高于此临界压力下会发生单层到多层的转变。这些结果不仅为天然肺表面活性剂在油水界面的相行为提供了新的生物物理见解,而且对液体通气和液体呼吸技术的进一步发展具有转化意义。