University of Konstanz-D-78457 Konstanz, Germany.
Phys Rev Lett. 2023 Jun 9;130(23):236101. doi: 10.1103/PhysRevLett.130.236101.
We investigate the vibrational properties of topologically disordered materials by analytically studying particles that harmonically oscillate around random positions. Exploiting classical field theory in the thermodynamic limit at T=0, we build up a self-consistent model by analyzing the Hessian utilizing Euclidean random matrix theory. In accordance with earlier findings [T. S. Grigera et al.J. Stat. Mech. (2011) P02015.JSMTC61742-546810.1088/1742-5468/2011/02/P02015], we take nonplanar diagrams into account to correctly address multiple local scattering events. By doing so, we end up with a first principles theory that can predict the main anomalies of athermal disordered materials, including the boson peak, sound softening, and Rayleigh damping of sound. In the vibrational density of states, the sound modes lead to Debye's law for small frequencies. Additionally, an excess appears in the density of states starting as ω^{4} in the low frequency limit, which is attributed to (quasi-) localized modes.
我们通过分析在随机位置附近谐波振荡的粒子来研究拓扑无序材料的振动特性。在 T=0 时利用经典场论在热力学极限下,我们通过分析利用欧式随机矩阵理论的 Hessian 来建立自洽模型。根据早期的研究结果[T. S. Grigera 等人。J. Stat. Mech. (2011) P02015. JSMTC61742-546810.1088/1742-5468/2011/02/P02015],我们考虑非平面图以正确处理多个局部散射事件。通过这样做,我们得到了一个可以预测非热无序材料主要异常的第一性原理理论,包括声子峰、声软化和声波的瑞利阻尼。在振动态密度中,声模在小频率下导致德拜定律。此外,在态密度中出现一个从低频极限开始为 ω^{4}的过剩,这归因于(准)局域模。