Department of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran.
Department of Civil and Architectural Engineering, Sultan Qaboos University, Muscat, Oman.
Environ Sci Pollut Res Int. 2023 Jul;30(35):84110-84125. doi: 10.1007/s11356-023-28270-w. Epub 2023 Jun 24.
Effectual air quality monitoring network (AQMN) design plays a prominent role in environmental engineering. An optimal AQMN design should consider stations' mutual information and system uncertainties for effectiveness. This study develops a novel optimization model using a non-dominated sorting genetic algorithm II (NSGA-II). The Bayesian maximum entropy (BME) method generates potential stations as the input of a framework based on the transinformation entropy (TE) method to maximize the coverage and minimize the probability of selecting stations. Also, the fuzzy degree of membership and the nonlinear interval number programming (NINP) approaches are used to survey the uncertainty of the joint information. To obtain the best Pareto optimal solution of the AQMN characterization, a robust ranking technique, called Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE) approach, is utilized to select the most appropriate AQMN properties. This methodology is applied to Los Angeles, Long Beach, and Anaheim in California, USA. Results suggest using 4, 4, and 5 stations to monitor CO, NO, and ozone, respectively; however, implementing this recommendation reduces coverage by 3.75, 3.75, and 3 times for CO, NO, and ozone, respectively. On the positive side, this substantially decreases TE for CO, NO, and ozone concentrations by 8.25, 5.86, and 4.75 times, respectively.
有效的空气质量监测网络(AQMN)设计在环境工程中起着重要作用。一个最优的 AQMN 设计应考虑站点之间的相互信息和系统不确定性,以提高其有效性。本研究使用非支配排序遗传算法 II(NSGA-II)开发了一种新的优化模型。贝叶斯最大熵(BME)方法生成潜在站点作为基于互信息熵(TE)方法的框架的输入,以最大化覆盖范围并最小化选择站点的概率。此外,还使用模糊隶属度和非线性区间数规划(NINP)方法来调查联合信息的不确定性。为了获得 AQMN 特征的最佳帕累托最优解,使用称为偏好排序组织 METHod for Enrichment Evaluation(PROMETHEE)的稳健排序技术来选择最合适的 AQMN 属性。该方法应用于美国加利福尼亚州的洛杉矶、长滩和阿纳海姆。结果表明,分别使用 4、4 和 5 个站点监测 CO、NO 和臭氧;然而,实施这一建议会使 CO、NO 和臭氧的覆盖率分别降低 3.75、3.75 和 3 倍。从积极的方面来看,这会使 CO、NO 和臭氧浓度的 TE 分别降低 8.25、5.86 和 4.75 倍。