SAS Institute, Inc., 100 SAS Campus Dr. S3042, Cary, North Carolina 27513, USA.
Environ Sci Technol. 2010 Sep 1;44(17):6738-44. doi: 10.1021/es1013328.
Space-time data analysis and assimilation techniques in atmospheric sciences typically consider input from monitoring measurements. The input is often processed in a manner that acknowledges characteristics of the measurements (e.g., underlying patterns, fluctuation features) under conditions of uncertainty; it also leads to the derivation of secondary information that serves study-oriented goals, and provides input to space-time prediction techniques. We present a novel approach that blends a rigorous space-time prediction model (Bayesian maximum entropy, BME) with a cognitively informed visualization of high-dimensional data (spatialization). The combined BME and spatialization approach (BME-S) is used to study monthly averaged NO2 and mean annual SO4 measurements in California over the 15-year period 1988-2002. Using the original scattered measurements of these two pollutants BME generates spatiotemporal predictions on a regular grid across the state. Subsequently, the prediction network undergoes the spatialization transformation into a lower-dimensional geometric representation, aimed at revealing patterns and relationships that exist within the input data. The proposed BME-S provides a powerful spatiotemporal framework to study a variety of air pollution data sources.
大气科学中的时空数据分析和同化技术通常考虑监测测量的输入。输入通常以一种方式进行处理,该方式承认在不确定条件下测量的特征(例如,潜在模式、波动特征);它还导致派生用于面向研究目标的辅助信息,并为时空预测技术提供输入。我们提出了一种新颖的方法,该方法将严格的时空预测模型(贝叶斯最大熵,BME)与高维数据的认知信息可视化(空间化)相结合。组合的 BME 和空间化方法(BME-S)用于研究 1988-2002 年间加利福尼亚州 15 年期间的每月平均 NO2 和平均年度 SO4 测量。使用这两种污染物的原始分散测量值,BME 在整个州的规则网格上生成时空预测。随后,预测网络经历空间化转换为低维几何表示,旨在揭示输入数据中存在的模式和关系。所提出的 BME-S 为研究各种空气污染数据源提供了强大的时空框架。