Suppr超能文献

UCP1 缺陷型雌性小鼠的多食症削弱了 FGF21 的抗肥胖作用。

Hyperphagia of female UCP1-deficient mice blunts anti-obesity effects of FGF21.

机构信息

Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden.

出版信息

Sci Rep. 2023 Jun 24;13(1):10288. doi: 10.1038/s41598-023-37264-0.

Abstract

Increasing energy expenditure through uncoupling protein 1 (UCP1) activity in thermogenic adipose tissue is widely investigated to correct diet-induced obesity (DIO). Paradoxically, UCP1-deficient male mice are resistant to DIO at room temperature. Recently, we uncovered a key role for fibroblast growth factor 21 (FGF21), a promising drug target for treatment of metabolic disease, in this phenomenon. As the metabolic action of FGF21 is so far understudied in females, we aim to investigate potential sexual dimorphisms. Here, we confirm that male UCP1 KO mice display resistance to DIO in mild cold, without significant changes in metabolic parameters. Surprisingly, females gained the same amount of body fat as WT controls. Molecular regulation was similar between UCP1 KO males and females, with an upregulation of serum FGF21, coinciding with beiging of inguinal white adipose tissue and induced lipid metabolism. While energy expenditure did not display significant differences, UCP1 KO females significantly increased their food intake. Altogether, our results indicate that hyperphagia is likely counteracting the beneficial effects of FGF21 in female mice. This underlines the importance of sex-specific studies in (pre)clinical research for personalized drug development.

摘要

通过解偶联蛋白 1(UCP1)在产热脂肪组织中的活性增加能量消耗,广泛用于纠正饮食诱导的肥胖(DIO)。矛盾的是,UCP1 缺陷型雄性小鼠在室温下对 DIO 具有抗性。最近,我们发现成纤维细胞生长因子 21(FGF21)在这种现象中起着关键作用,FGF21 是治疗代谢疾病的有希望的药物靶点。由于迄今为止对女性的 FGF21 代谢作用研究甚少,我们旨在研究潜在的性别二态性。在这里,我们证实 UCP1 KO 雄性小鼠在轻度寒冷中对 DIO 具有抗性,代谢参数没有明显变化。令人惊讶的是,雌性小鼠获得的体脂肪量与 WT 对照组相同。UCP1 KO 雄性和雌性之间的分子调节相似,血清 FGF21 上调,与腹股沟白色脂肪组织的褐变和诱导脂质代谢一致。虽然能量消耗没有显示出显著差异,但 UCP1 KO 雌性显著增加了它们的食物摄入量。总之,我们的结果表明,摄食过度可能抵消了 FGF21 在雌性小鼠中的有益作用。这强调了在(临床前)研究中进行基于性别的研究对于个性化药物开发的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/540a/10290677/46b31f8e6d58/41598_2023_37264_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验