Suppr超能文献

人工智能能否辅助关节镜手术决策?第 1 部分:标准化分析方案有助于提高小肩袖撕裂中长头肩袖肌腱关节镜诊断评估的观察者间一致性。

Can artificial intelligence help decision-making in arthroscopy? Part 1: Use of a standardized analysis protocol improves inter-observer agreement of arthroscopic diagnostic assessments of the long head of biceps tendon in small rotator cuff tears.

机构信息

Service de Chirurgie Orthopédique, Hôpital Trousseau, Faculté de Médecine, Université de Tours Centre-Val de Loire, CHRU de Tours, Tours, France.

LIFAT (EA6300), École Polytechnique Universitaire de Tours, 64, avenue Jean-Portalis, 37200 Tours, France.

出版信息

Orthop Traumatol Surg Res. 2023 Dec;109(8S):103648. doi: 10.1016/j.otsr.2023.103648. Epub 2023 Jun 24.

Abstract

INTRODUCTION

Injuries of the long head of biceps (LHB) tendon are common but difficult to diagnose clinically or using imaging. Arthroscopy is the preferred means of diagnostic assessment of the LHB, but it often proves challenging. Its reliability and reproducibility have not yet been assessed. Artificial intelligence (AI) could assist in the arthroscopic analysis of the LHB. The main objective of this study was to evaluate the inter-observer agreement for the specific LHB assessment, according to an analysis protocol based on images of interest. The secondary objective was to define a video database, called "ground truth", intended to create and train AI for the LHB assessment.

HYPOTHESIS

The hypothesis was that the inter-observer agreement analysis, on standardized images, was strong enough to allow the "ground truth" videos to be used as an input database for an AI solution to be used in making arthroscopic LHB diagnoses.

MATERIALS AND METHOD

One hundred and ninety-nine sets of standardized arthroscopic images of LHB exploration were evaluated by 3 independent observers. Each had to characterize the healthy or pathological state of the tendon, specifying the type of lesion: partial tear, hourglass hypertrophy, instability, fissure, superior labral anterior posterior lesion (SLAP 2), chondral print and pathological pulley without instability. Inter-observer agreement levels were measured using Cohen's Kappa (K) coefficient and Kappa Accuracy.

RESULTS

The strength of agreement was moderate to strong according to the observers (Kappa 0.54 to 0.7 and KappaAcc from 86 to 92%), when determining the healthy or pathological state of the LHB. When the tendon was pathological, the strength of agreement was moderate to strong when it came to a partial tear (Kappa 0.49 to 0.71 and KappaAcc from 85 to 92%), fissure (Kappa -0.5 to 0.7 and KappaAcc from 36 to 93%) or a SLAP tear (0.54 to 0.88 and KappaAcc from 90 to 97%). It was low for unstable lesion (Kappa 0.04 to 0.25 and KappaAcc from 36 to 88%).

CONCLUSION

The analysis of the LHB, from arthroscopic images, had a high level of agreement for the diagnosis of its healthy or pathological nature. However, the agreement rate decreased for the diagnosis of rare or dynamic tendon lesions. Thus, AI engineered from human analysis would have the same difficulties if it was limited only to an arthroscopic analysis. The integration of clinical and paraclinical data is necessary to improve the arthroscopic diagnosis of LHB injuries. It also seems to be an essential prerequisite for making a so-called "ground truth" database for building a high-performance AI solution.

LEVEL OF EVIDENCE

III; inter-observer prospective series.

摘要

简介

肱二头肌长头腱(LHB)损伤很常见,但临床或影像学诊断困难。关节镜检查是评估 LHB 的首选方法,但通常具有挑战性。其可靠性和可重复性尚未得到评估。人工智能(AI)可以协助关节镜分析 LHB。本研究的主要目的是根据基于感兴趣图像的分析方案,评估特定 LHB 评估的观察者间一致性。次要目的是定义一个名为“真实数据”的视频数据库,用于创建和训练用于 LHB 评估的 AI。

假设

假设在标准化图像上进行的观察者间一致性分析足够强,可以将“真实数据”视频用作用于进行关节镜 LHB 诊断的 AI 解决方案的输入数据库。

材料与方法

199 组 LHB 探查的标准化关节镜图像由 3 名独立观察者进行评估。每位观察者都必须描述腱的健康或病理状态,并指定病变类型:部分撕裂、沙漏样肥大、不稳定、裂缝、前上盂唇后前损伤(SLAP 2)、软骨压痕和无不稳定的病理性滑囊。使用 Cohen's Kappa(K)系数和 KappaAcc 测量观察者间一致性水平。

结果

当确定 LHB 的健康或病理状态时,观察者的一致性强度为中度至高度(Kappa 0.54 至 0.7 和 KappaAcc 为 86 至 92%)。当腱为病理性时,当涉及部分撕裂(Kappa 0.49 至 0.71 和 KappaAcc 为 85 至 92%)、裂缝(Kappa -0.5 至 0.7 和 KappaAcc 为 36 至 93%)或 SLAP 撕裂(0.54 至 0.88 和 KappaAcc 为 90 至 97%)时,一致性强度为中度至高度。对于不稳定病变,一致性强度较低(Kappa 0.04 至 0.25 和 KappaAcc 为 36 至 88%)。

结论

LHB 的关节镜图像分析对于诊断其健康或病理性质具有高度的一致性。然而,对于罕见或动态腱病变的诊断,一致性率降低。因此,如果 AI 仅局限于关节镜分析,那么它也会遇到同样的困难。为了提高 LHB 损伤的关节镜诊断,有必要整合临床和辅助临床数据。这似乎也是为建立高性能 AI 解决方案构建所谓“真实数据”数据库的必要前提。

证据等级

III;观察者间前瞻性研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验