Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
Nanoscale. 2023 Jul 13;15(27):11506-11516. doi: 10.1039/d3nr01012k.
It is critical to understand the effect of lattice geometry on the order parameter of a condensed matter system, as it controls phase transitions in such systems. Artificial spin ices (ASIs) are two-dimensional lattices of Ising-like nanomagnets that provide an opportunity to explore such phenomena by lithographically controlling the lattice geometry to observe its influence on magnetic ordering and frustration effects. Here we report a systematic approach to studying the effects of disorder in rhombus ASIs generated from combinations of five vertex motifs. We investigate four geometries characterized by a geometric order parameter, with symmetries ranging from periodic to quasiperiodic to random. Lorentz transmission electron microscopy data indicates magnetic domain behavior depends on chains of strongly-coupled islands in the periodic and sixfold-twinned lattices, while the behavior of the disordered lattice is dominated by vertex motifs with large configurational degeneracy. Utilizing micromagnetic simulations, a quantitative analysis of the lattice energetics showed that the experimental rotationally-demagnetized state of the disordered ASI was closer in energy to the idealized ground state compared to other periodic and twinned ASIs. Our work provides a unique pathway for using degeneracy, magnetic frustration, and order to control the magnetization behavior of designer disordered systems.
理解晶格几何形状对凝聚态物质系统序参量的影响至关重要,因为它控制着这些系统中的相变。人工自旋冰(Artificial spin ice,简称 ASI)是一种由类伊辛纳米磁体组成的二维晶格,通过光刻控制晶格几何形状来观察其对磁序和受挫效应的影响,提供了一种探索此类现象的机会。在这里,我们报告了一种系统的方法来研究由五个顶点基元组合生成的菱形 ASI 中的无序效应。我们研究了四种具有几何序参量的几何形状,其对称性范围从周期性到准周期性到随机性。洛伦兹透射电子显微镜数据表明,磁畴行为取决于周期性和六重孪晶格子中强耦合岛链,而无序格子的行为则由具有较大构型简并度的顶点基元主导。利用微磁模拟,对晶格能的定量分析表明,与其他周期性和孪晶 ASI 相比,无序 ASI 的实验旋转去磁状态在能量上更接近理想化的基态。我们的工作为利用简并、磁受挫和有序来控制设计无序系统的磁化行为提供了一条独特的途径。