Scarinci Ignacio, Valente Mauro, Pérez Pedro
Instituto de Física Enrique Gaviola (IFEG), CONICET, Av. Medina Allende s/n, 5000, Córdoba, Argentina.
Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes de Rayos X (LIIFAMIRx), Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Av. Medina Allende s/n, 5000, Córdoba, Argentina.
EJNMMI Phys. 2023 Jun 26;10(1):41. doi: 10.1186/s40658-023-00560-9.
Absorbed dose calculation by kernel convolution requires the prior determination of dose point kernels (DPK). This study reports on the design, implementation, and test of a multi-target regressor approach to generate the DPKs for monoenergetic sources and a model to obtain DPKs for beta emitters.
DPK for monoenergetic electron sources were calculated using the FLUKA Monte Carlo (MC) code for many materials of clinical interest and initial energies ranging from 10 to 3000 keV. Regressor Chains (RC) with three different coefficients regularization/shrinkage models were used as base regressors. Electron monoenergetic scaled DPKs (sDPKs) were used to assess the corresponding sDPKs for beta emitters typically used in nuclear medicine, which were compared against reference published data. Finally, the beta emitters sDPK were applied to a patient-specific case calculating the Voxel Dose Kernel (VDK) for a hepatic radioembolization treatment with [Formula: see text]Y.
The three trained machine learning models demonstrated a promising capacity to predict the sDPK for both monoenergetic emissions and beta emitters of clinical interest attaining differences lower than [Formula: see text] in the mean average percentage error (MAPE) as compared with previous studies. Furthermore, differences lower than [Formula: see text] were obtained for the absorbed dose in patient-specific dosimetry comparing against full stochastic MC calculations.
An ML model was developed to assess dosimetry calculations in nuclear medicine. The implemented approach has shown the capacity to accurately predict the sDPK for monoenergetic beta sources in a wide range of energy in different materials. The ML model to calculate the sDPK for beta-emitting radionuclides allowed to obtain VDK useful to achieve reliable patient-specific absorbed dose distributions required short computation times.
通过核卷积进行吸收剂量计算需要预先确定剂量点核(DPK)。本研究报告了一种多目标回归方法的设计、实现和测试,该方法用于生成单能源的DPK以及一种获取β发射体DPK的模型。
使用FLUKA蒙特卡罗(MC)代码针对许多具有临床意义的材料以及范围从10至3000 keV的初始能量计算单能电子源的DPK。使用具有三种不同系数正则化/收缩模型的回归链(RC)作为基础回归器。电子单能缩放DPK(sDPK)用于评估核医学中通常使用的β发射体的相应sDPK,并将其与已发表的参考数据进行比较。最后,将β发射体sDPK应用于特定患者案例,计算用[公式:见正文]Y进行肝动脉放射性栓塞治疗的体素剂量核(VDK)。
三个经过训练的机器学习模型显示出有前景的能力,能够预测临床相关的单能发射和β发射体的sDPK,与先前研究相比,平均平均百分比误差(MAPE)中的差异低于[公式:见正文]。此外,在特定患者剂量测定中,与完全随机MC计算相比,吸收剂量的差异低于[公式:见正文]。
开发了一种机器学习模型来评估核医学中的剂量测定计算。所实施的方法已显示出能够在不同材料的广泛能量范围内准确预测单能β源的sDPK。用于计算β发射放射性核素sDPK的机器学习模型能够获得VDK,有助于实现可靠的特定患者吸收剂量分布,且计算时间短。