Chen Chia-Yu, Löber Ulrike, Forslund Sofia K
Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany.
Experimental and Clinical Research Center, A Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin 13125, Germany.
Bioinform Adv. 2023 May 18;3(1):vbad063. doi: 10.1093/bioadv/vbad063. eCollection 2023.
We introduce LongDat, an R package that analyzes longitudinal multivariable (cohort) data while simultaneously accounting for a potentially large number of covariates. The primary use case is to differentiate direct from indirect effects of an intervention (or treatment) and to identify covariates (potential mechanistic intermediates) in longitudinal data. LongDat focuses on analyzing longitudinal microbiome data, but its usage can be expanded to other data types, such as binary, categorical and continuous data. We tested and compared LongDat with other tools (i.e. MaAsLin2, ANCOM, lgpr and ZIBR) on both simulated and real data. We showed that LongDat outperformed these tools in accuracy, runtime and memory cost, especially when there were multiple covariates. The results indicate that the LongDat R package is a computationally efficient and low-memory-cost tool for longitudinal data with multiple covariates and facilitates robust biomarker searches in high-dimensional datasets.
The R package LongDat is available on CRAN (https://cran.r-project.org/web/packages/LongDat/) and GitHub (https://github.com/CCY-dev/LongDat).
Supplementary data are available at online.
我们介绍了LongDat,这是一个R软件包,用于分析纵向多变量(队列)数据,同时考虑潜在的大量协变量。其主要用例是区分干预(或治疗)的直接效应和间接效应,并识别纵向数据中的协变量(潜在的机制中间体)。LongDat专注于分析纵向微生物组数据,但其用途可扩展到其他数据类型,如二元、分类和连续数据。我们在模拟数据和真实数据上对LongDat与其他工具(即MaAsLin2、ANCOM、lgpr和ZIBR)进行了测试和比较。我们表明,LongDat在准确性、运行时间和内存成本方面优于这些工具,尤其是在存在多个协变量的情况下。结果表明,LongDat R软件包是一种计算效率高、内存成本低的工具,适用于具有多个协变量的纵向数据,并有助于在高维数据集中进行稳健的生物标志物搜索。
R软件包LongDat可在CRAN(https://cran.r-project.org/web/packages/LongDat/)和GitHub(https://github.com/CCY-dev/LongDat)上获取。
补充数据可在网上获取。