Suppr超能文献

多组学分析基于解剖学位置将结直肠癌分类为不同的甲基化免疫原性和血管生成亚型。

Multi-omics Analysis Classifies Colorectal Cancer into Distinct Methylated Immunogenic and Angiogenic Subtypes Based on Anatomical Laterality.

作者信息

R I Anu, Vatsyayan Aastha, Damodaran Dileep, Sivadas Ambily, Van der Speeten Kurt

机构信息

Department of Cancer Biology and Therapeutics, MVR Cancer Center and Research Institute, Calicut, Kerala India.

Department of Clinical Biochemistry, MVR Cancer Center and Research Institute, Calicut, Kerala India.

出版信息

Indian J Surg Oncol. 2023 Jun;14(Suppl 1):209-219. doi: 10.1007/s13193-023-01760-6. Epub 2023 May 17.

Abstract

UNLABELLED

We employed supervised machine learning algorithms to a cohort of colorectal cancer patients from the NCI to differentiate and classify the heterogenous disease based on anatomical laterality and multi-omics stratification, in a first of its kind. Multi-omics integrative analysis shows distinct clustering of left and right colorectal cancer with disentangled representation of methylome and delineation of transcriptome and genome. We present novel multi-omics findings consistent with augmented hypermethylation of genes in right CRC, epigenomic biomarkers on the right in conjunction with immune-mediated pathway signatures, and lymphocytic invasion which unlocks unique therapeutic avenues. Contrarily, left CRC multi-omics signature is found to be marked by angiogenesis, cadherins, and epithelial-mesenchymal transition (EMT). An integrated multi-omics molecular signature of , hsa-miR-10b, and panel of , , , , and copy number altered genes have been found by the study. Overall survival analysis reveals genomic biomarkers and in 852 LCRC cases, and in 170 RCRC cases that predicts a significant survival benefit. Our study exemplifies the translational competence and robustness of machine learning in effective translational bridging of research and clinic.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s13193-023-01760-6.

摘要

未标注

我们首次将监督式机器学习算法应用于来自美国国立癌症研究所(NCI)的一组结直肠癌患者,以根据解剖学侧别和多组学分层对这种异质性疾病进行区分和分类。多组学综合分析显示,左、右半结肠癌存在明显的聚类,甲基化组有清晰的表征,转录组和基因组也有明确的划分。我们展示了与右半结肠癌中基因超甲基化增加、右侧的表观基因组生物标志物以及免疫介导途径特征和淋巴细胞浸润相一致的新型多组学发现,这些发现开启了独特的治疗途径。相反,左半结肠癌的多组学特征表现为血管生成、钙黏蛋白和上皮-间质转化(EMT)。该研究发现了一个由hsa-miR-10b以及一组、、、和拷贝数改变基因组成的综合多组学分子特征。总生存分析揭示了852例左半结肠癌病例中的基因组生物标志物和,以及170例右半结肠癌病例中的,这些标志物预测了显著的生存获益。我们的研究例证了机器学习在研究与临床的有效转化衔接方面的转化能力和稳健性。

补充信息

在线版本包含可在10.1007/s13193-023-01760-6获取的补充材料。

相似文献

1
Multi-omics Analysis Classifies Colorectal Cancer into Distinct Methylated Immunogenic and Angiogenic Subtypes Based on Anatomical Laterality.
Indian J Surg Oncol. 2023 Jun;14(Suppl 1):209-219. doi: 10.1007/s13193-023-01760-6. Epub 2023 May 17.
2
Multi-omics cluster defines the subtypes of CRC with distinct prognosis and tumor microenvironment.
Eur J Med Res. 2024 Mar 28;29(1):207. doi: 10.1186/s40001-024-01805-8.
5
Machine learning combining multi-omics data and network algorithms identifies adrenocortical carcinoma prognostic biomarkers.
Front Mol Biosci. 2023 Nov 6;10:1258902. doi: 10.3389/fmolb.2023.1258902. eCollection 2023.
7
A multi-omics machine learning framework in predicting the survival of colorectal cancer patients.
Comput Biol Med. 2022 Jul;146:105516. doi: 10.1016/j.compbiomed.2022.105516. Epub 2022 Apr 18.

本文引用的文献

1
Interplay between Genome, Metabolome and Microbiome in Colorectal Cancer.
Cancers (Basel). 2021 Dec 10;13(24):6216. doi: 10.3390/cancers13246216.
2
A Review on the Carcinogenic Roles of DSCAM-AS1.
Front Cell Dev Biol. 2021 Oct 11;9:758513. doi: 10.3389/fcell.2021.758513. eCollection 2021.
3
IFNγ signaling integrity in colorectal cancer immunity and immunotherapy.
Cell Mol Immunol. 2022 Jan;19(1):23-32. doi: 10.1038/s41423-021-00735-3. Epub 2021 Aug 12.
4
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.
CA Cancer J Clin. 2021 May;71(3):209-249. doi: 10.3322/caac.21660. Epub 2021 Feb 4.
5
Prognostic Model of Colorectal Cancer Constructed by Eight Immune-Related Genes.
Front Mol Biosci. 2020 Nov 27;7:604252. doi: 10.3389/fmolb.2020.604252. eCollection 2020.
7
Regulatory roles for SOX11 in development, stem cells and cancer.
Semin Cancer Biol. 2020 Dec;67(Pt 1):3-11. doi: 10.1016/j.semcancer.2020.06.015. Epub 2020 Jun 20.
8
Identification of EMT-related high-risk stage II colorectal cancer and characterisation of metastasis-related genes.
Br J Cancer. 2020 Aug;123(3):410-417. doi: 10.1038/s41416-020-0902-y. Epub 2020 May 21.
9
Opioids in Cancer Development, Progression and Metastasis: Focus on Colorectal Cancer.
Curr Treat Options Oncol. 2020 Jan 22;21(1):6. doi: 10.1007/s11864-019-0699-1.
10
The effects of tramadol on cancer stem cells and metabolic changes in colon carcinoma cells lines.
Gene. 2019 Nov 15;718:144030. doi: 10.1016/j.gene.2019.144030. Epub 2019 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验