Fakeeha Anis H, Al-Fatesh Ahmed S, Srivastava Vijay Kumar, Ibrahim Ahmed A, Abahussain Abdulaziz A M, Abu-Dahrieh Jehad K, Alotibi Mohammed F, Kumar Rawesh
Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia.
Department of Chemistry, Indus University, Ahmedabad, Gujarat 382115, India.
ACS Omega. 2023 Jun 8;8(24):22108-22120. doi: 10.1021/acsomega.3c02229. eCollection 2023 Jun 20.
Hydrogen production from dry reforming of methane (DRM) not only concerns with green energy but also involves the consumption of two greenhouse gases CH and CO. The lattice oxygen endowing capacity, thermostability, and efficient anchoring of Ni has brought the attention of the DRM community over the yttria-zirconia-supported Ni system (Ni/Y + Zr). Herein, Gd-promoted Ni/Y + Zr is characterized and investigated for hydrogen production through DRM. The H-TPR → CO-TPD → H-TPR cyclic experiment indicates that most of the catalytic active site (Ni) remains present during the DRM reaction over all catalyst systems. Upon Y addition, the tetragonal zirconia-yttrium oxide phase stabilizes the support. Gadolinium promotional addition up to 4 wt % modifies the surface by formation of the cubic zirconium gadolinium oxide phase, limits the size of NiO, and makes reducible NiO moderately interacted species available over the catalyst surface and resists coke deposition. The 5Ni4Gd/Y + Zr catalyst shows about ∼80% yield of hydrogen constantly up to 24 h at 800 °C.
甲烷干重整制氢(DRM)不仅关乎绿色能源,还涉及两种温室气体CH和CO的消耗。氧化钇 - 氧化锆负载的镍体系(Ni/Y + Zr)中,晶格氧赋予镍的能力、热稳定性和有效锚定作用引起了DRM领域的关注。在此,对钆促进的Ni/Y + Zr进行了表征,并研究了其通过DRM制氢的性能。H-TPR→CO-TPD→H-TPR循环实验表明,在所有催化剂体系的DRM反应过程中,大部分催化活性位点(Ni)仍然存在。添加Y后,四方氧化锆 - 氧化钇相使载体稳定。添加高达4 wt%的钆促进剂通过形成立方氧化钆锆相来修饰表面,限制NiO的尺寸,并使可还原的NiO适度相互作用的物种在催化剂表面可用,且能抵抗积碳。5Ni4Gd/Y + Zr催化剂在800°C下长达24小时内氢气产率持续约80%。