Calvia Alessandro, Gozzi Fausto, Lippi Francesco, Zanco Giovanni
Dipartimento di Economia e Finanza, LUISS University, Viale Romania 32, 00197 Rome, Italy.
Einaudi Institute for Economics and Finance, Via Sallustiana 62, 00187 Rome, Italy.
Econ Theory. 2023 Apr 15:1-28. doi: 10.1007/s00199-023-01493-1.
A large number of recent studies consider a compartmental SIR model to study optimal control policies aimed at containing the diffusion of COVID-19 while minimizing the economic costs of preventive measures. Such problems are non-convex and standard results need not to hold. We use a Dynamic Programming approach and prove some continuity properties of the value function of the associated optimization problem. We study the corresponding Hamilton-Jacobi-Bellman equation and show that the value function solves it in the viscosity sense. Finally, we discuss some optimality conditions. Our paper represents a first contribution towards a complete analysis of non-convex dynamic optimization problems, within a Dynamic Programming approach.
近期大量研究采用分区SIR模型来研究最优控制策略,旨在控制新冠病毒的传播,同时将预防措施的经济成本降至最低。这类问题是非凸的,标准结果未必成立。我们采用动态规划方法,证明了相关优化问题值函数的一些连续性性质。我们研究了相应的汉密尔顿-雅可比-贝尔曼方程,并表明值函数在粘性意义下解该方程。最后,我们讨论了一些最优性条件。本文是在动态规划方法内对非凸动态优化问题进行完整分析的首次贡献。