Stover Joshua D, Trone Matthew A, Lawrence Brandon, Bowles Robby D
Department of Bioengineering University of Utah Salt Lake City Utah USA.
Department of Orthopaedics University of Utah Salt Lake City Utah USA.
JOR Spine. 2023 Mar 17;6(2):e1253. doi: 10.1002/jsp2.1253. eCollection 2023 Jun.
Low back pain is a major contributor to disability worldwide and generates a tremendous socioeconomic impact. The degenerative intervertebral disc (IVD) has been hypothesized to contribute to discogenic pain by sensitizing nociceptive neurons innervating the disc to stimuli that is nonpainful in healthy patients. Previously, we demonstrated the ability of degenerative IVDs to sensitize neurons to mechanical stimuli; however, elucidation of degenerative IVDs discogenic pain mechanisms is required to develop therapeutic strategies that directly target these mechanisms.
In this study, we utilized CRISPR epigenome editing of nociceptive neurons to identify mechanisms of degenerative IVD-induced changes to mechanical nociception and demonstrated the ability of multiplex CRISPR epigenome editing of nociceptive neurons to modulate inflammation-induced mechanical nociception.
Utilizing an in vitro model, we demonstrated degenerative IVD-produced IL-6-induced increases in nociceptive neuron activity in response to mechanical stimuli, mediated by TRPA1, ASIC3, and Piezo2 ion channel activity. Once these ion channels were identified as mediators of degenerative IVD-induced mechanical nociception, we developed singleplex and multiplex CRISPR epigenome editing vectors that modulate endogenous expression of TRPA1, ASIC3, and Piezo2 via targeted gene promoter histone methylation. When delivered to nociceptive neurons, the multiplex CRISPR epigenome editing vectors abolished degenerative IVD-induced mechanical nociception while preserving nonpathologic neuron activity.
This work demonstrates the potential of multiplex CRISPR epigenome editing as a highly targeted gene-based neuromodulation strategy for the treatment of discogenic pain, specifically; and, for the treatment of inflammatory chronic pain conditions, more broadly.
下腰痛是全球残疾的主要原因,产生了巨大的社会经济影响。退变的椎间盘(IVD)被认为通过使支配椎间盘的伤害性神经元对健康患者中无疼痛的刺激敏感来导致盘源性疼痛。此前,我们证明了退变的IVD使神经元对机械刺激敏感的能力;然而,需要阐明退变的IVD盘源性疼痛机制以开发直接针对这些机制的治疗策略。
在本研究中,我们利用伤害性神经元的CRISPR表观基因组编辑来确定退变的IVD诱导机械性伤害感受变化的机制,并证明了伤害性神经元的多重CRISPR表观基因组编辑调节炎症诱导的机械性伤害感受的能力。
利用体外模型,我们证明退变的IVD产生的白细胞介素6通过瞬时受体电位锚蛋白1(TRPA1)、酸敏感离子通道3(ASIC3)和压电蛋白2(Piezo2)离子通道活性介导,诱导伤害性神经元对机械刺激的反应性增加。一旦这些离子通道被确定为退变的IVD诱导的机械性伤害感受的介质,我们开发了单重和多重CRISPR表观基因组编辑载体,通过靶向基因启动子组蛋白甲基化来调节TRPA1、ASIC3和Piezo2的内源性表达。当递送至伤害性神经元时,多重CRISPR表观基因组编辑载体消除了退变的IVD诱导的机械性伤害感受,同时保留了非病理性神经元活性。
这项工作证明了多重CRISPR表观基因组编辑作为一种高度靶向的基于基因的神经调节策略治疗盘源性疼痛的潜力,特别是;更广泛地说,用于治疗炎症性慢性疼痛疾病。