Davarci Orhun O, Yang Emily Y, Viguerie Alexander, Yankeelov Thomas E, Lorenzo Guillermo
Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E 24th St, Austin, TX 78712-1229 USA.
Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX USA.
Eng Comput. 2023 Apr 25:1-25. doi: 10.1007/s00366-023-01816-9.
The rapid spread of the numerous outbreaks of the coronavirus disease 2019 (COVID-19) pandemic has fueled interest in mathematical models designed to understand and predict infectious disease spread, with the ultimate goal of contributing to the decision making of public health authorities. Here, we propose a computational pipeline that dynamically parameterizes a modified SEIRD (susceptible-exposed-infected-recovered-deceased) model using standard daily series of COVID-19 cases and deaths, along with isolated estimates of population-level seroprevalence. We test our pipeline in five heavily impacted states of the US (New York, California, Florida, Illinois, and Texas) between March and August 2020, considering two scenarios with different calibration time horizons to assess the update in model performance as new epidemiologic data become available. Our results show a median normalized root mean squared error (NRMSE) of 2.38% and 4.28% in calibrating cumulative cases and deaths in the first scenario, and 2.41% and 2.30% when new data are assimilated in the second scenario, respectively. Then, 2-week (4-week) forecasts of the calibrated model resulted in median NRMSE of cumulative cases and deaths of 5.85% and 4.68% (8.60% and 17.94%) in the first scenario, and 1.86% and 1.93% (2.21% and 1.45%) in the second. Additionally, we show that our method provides significantly more accurate predictions of cases and deaths than a constant parameterization in the second scenario ( < 0.05). Thus, we posit that our methodology is a promising approach to analyze the dynamics of infectious disease outbreaks, and that our forecasts could contribute to designing effective pandemic-arresting public health policies.
The online version contains supplementary material available at 10.1007/s00366-023-01816-9.
2019年冠状病毒病(COVID-19)大流行众多疫情的迅速蔓延激发了人们对旨在理解和预测传染病传播的数学模型的兴趣,最终目标是为公共卫生当局的决策提供帮助。在此,我们提出一种计算流程,该流程使用COVID-19病例和死亡的标准每日系列数据以及人群水平血清阳性率的单独估计值,对改进的SEIRD(易感-暴露-感染-康复-死亡)模型进行动态参数化。我们在2020年3月至8月期间对美国五个受影响严重的州(纽约、加利福尼亚、佛罗里达、伊利诺伊和得克萨斯)测试了我们的流程,考虑了两种具有不同校准时间范围的情景,以评估随着新的流行病学数据可用,模型性能的更新情况。我们的结果显示,在第一种情景中校准累计病例和死亡时,归一化均方根误差(NRMSE)中位数分别为2.38%和4.28%,在第二种情景中纳入新数据时分别为2.41%和2.30%。然后,校准模型的2周(4周)预测在第一种情景中累计病例和死亡的NRMSE中位数分别为5.85%和4.68%(8.60%和17.94%),在第二种情景中分别为1.86%和1.93%(2.21%和1.45%)。此外,我们表明,在第二种情景中,我们的方法对病例和死亡的预测比固定参数化方法显著更准确(<0.05)。因此,我们认为我们的方法是分析传染病疫情动态的一种有前景的方法,并且我们的预测有助于设计有效的遏制大流行的公共卫生政策。
在线版本包含可在10.1007/s00366-023-01816-9获取的补充材料。