Suppr超能文献

一种用于图像分类的卷积神经网络与隐马尔可夫链的新型混合模型。

A new hybrid model of convolutional neural networks and hidden Markov chains for image classification.

作者信息

Goumiri Soumia, Benboudjema Dalila, Pieczynski Wojciech

机构信息

Laboratoire des Méthodes de Conception de Systèmes (LMCS), Ecole nationale Supérieure d'Informatique (ESI), BP, 68M Oued-Smar, 16270 Alger, Algeria.

CERIST, Centre de Recherche sur l'Information Scientifique et Technique, Ben Aknoun, 16030 Algeria.

出版信息

Neural Comput Appl. 2023 May 31:1-16. doi: 10.1007/s00521-023-08644-4.

Abstract

Convolutional neural networks (CNNs) have lately proven to be extremely effective in image recognition. Besides CNN, hidden Markov chains (HMCs) are probabilistic models widely used in image processing. This paper presents a new hybrid model composed of both CNNs and HMCs. The CNN model is used for feature extraction and dimensionality reduction and the HMC model for classification. In the new model, named CNN-HMC, convolutional and pooling layers of the CNN model are applied to extract features maps. Also a Peano scan is applied to obtain several HMCs. Expectation-Maximization (EM) algorithm is used to estimate HMC's parameters and to make the Bayesian Maximum Posterior Mode (MPM) classification method used unsupervised. The objective is to enhance the performances of the CNN models for the image classification task. To evaluate the performance of our proposal, it is compared to six models in two series of experiments. In the first series, we consider two CNN-HMC and compare them to two CNNs, 4Conv and Mini AlexNet, respectively. The results show that CNN-HMC model outperforms the classical CNN model, and significantly improves the accuracy of the Mini AlexNet. In the second series, it is compared to four models CNN-SVMs, CNN-LSTMs, CNN-RFs, and CNN-gcForests, which only differ from CNN-HMC by the second classification step. Based on five datasets and four metrics recall, precision, F1-score, and accuracy, results of these comparisons show again the interest of the proposed CNN-HMC. In particular, with a CNN model of 71% of accuracy, the CNN-HMC gives an accuracy ranging between 81.63% and 92.5%.

摘要

卷积神经网络(CNN)最近已被证明在图像识别方面极其有效。除了CNN,隐马尔可夫链(HMC)是图像处理中广泛使用的概率模型。本文提出了一种由CNN和HMC组成的新型混合模型。CNN模型用于特征提取和降维,而HMC模型用于分类。在名为CNN-HMC的新模型中,CNN模型的卷积层和池化层用于提取特征图。还应用了皮亚诺扫描来获得多个HMC。期望最大化(EM)算法用于估计HMC的参数,并使贝叶斯最大后验模式(MPM)分类方法能够无监督使用。目的是提高CNN模型在图像分类任务中的性能。为了评估我们提出的方法的性能,在两个系列的实验中将其与六个模型进行了比较。在第一个系列中,我们考虑了两个CNN-HMC,并分别将它们与两个CNN(4Conv和Mini AlexNet)进行比较。结果表明,CNN-HMC模型优于经典的CNN模型,并显著提高了Mini AlexNet的准确率。在第二个系列中,将其与四个模型CNN-SVM、CNN-LSTM、CNN-RF和CNN-gcForest进行比较,这四个模型仅在第二个分类步骤上与CNN-HMC不同。基于五个数据集和四个指标(召回率、精确率、F1分数和准确率),这些比较结果再次表明了所提出的CNN-HMC的优势。特别是,对于准确率为71%的CNN模型,CNN-HMC的准确率在81.63%至92.5%之间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3a5/10230497/89c6472ea01e/521_2023_8644_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验