Motzkin Julian C, Kanungo Ishan, D'Esposito Mark, Shirvalkar Prasad
Departments of Neurology and Anesthesia and Perioperative Care (Pain Management), University of California, San Francisco, San Francisco, CA, United States.
Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States.
Front Pain Res (Lausanne). 2023 Jun 8;4:1156108. doi: 10.3389/fpain.2023.1156108. eCollection 2023.
Precision neuromodulation of central brain circuits is a promising emerging therapeutic modality for a variety of neuropsychiatric disorders. Reliably identifying in whom, where, and in what context to provide brain stimulation for optimal pain relief are fundamental challenges limiting the widespread implementation of central neuromodulation treatments for chronic pain. Current approaches to brain stimulation target empirically derived regions of interest to the disorder or targets with strong connections to these regions. However, complex, multidimensional experiences like chronic pain are more closely linked to patterns of coordinated activity across distributed large-scale functional networks. Recent advances in precision network neuroscience indicate that these networks are highly variable in their neuroanatomical organization across individuals. Here we review accumulating evidence that variable central representations of pain will likely pose a major barrier to implementation of population-derived analgesic brain stimulation targets. We propose network-level estimates as a more valid, robust, and reliable way to stratify personalized candidate regions. Finally, we review key background, methods, and implications for developing network topology-informed brain stimulation targets for chronic pain.
对中枢脑回路进行精确神经调节是一种很有前景的新兴治疗方式,可用于治疗多种神经精神疾病。可靠地确定对哪些人、在何处以及在何种情况下进行脑刺激以实现最佳疼痛缓解,是限制中枢神经调节治疗慢性疼痛广泛应用的根本挑战。当前的脑刺激方法以经验性得出的与疾病相关的感兴趣区域或与这些区域有强连接的靶点为目标。然而,像慢性疼痛这样复杂的多维度体验与分布式大规模功能网络中协调活动的模式联系更为紧密。精确网络神经科学的最新进展表明,这些网络在个体间的神经解剖组织上具有高度变异性。在此,我们回顾越来越多的证据,即疼痛的可变中枢表征可能会成为实施基于人群的镇痛脑刺激靶点的主要障碍。我们提出网络水平估计作为一种更有效、稳健且可靠的方法来分层确定个性化候选区域。最后,我们回顾了开发用于慢性疼痛的基于网络拓扑的脑刺激靶点的关键背景、方法及意义。