Suppr超能文献

验证一种在退伍军人健康管理局内识别患者骨折的算法。

Validation of an algorithm to identify fractures among patients within the Veterans Health Administration.

机构信息

Veteran Administration Tennessee Valley VA Health Care System Geriatric Research Education Clinical Center (GRECC), Nashville, Tennessee, USA.

Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

出版信息

Pharmacoepidemiol Drug Saf. 2023 Nov;32(11):1290-1298. doi: 10.1002/pds.5662. Epub 2023 Jul 4.

Abstract

OBJECTIVE

To validate an algorithm that identifies fractures using billing codes from the International Classification of Diseases Ninth Revision (ICD-9) and Tenth Revision (ICD-10) for inpatient, outpatient, and emergency department visits in a population of patients.

METHODS

We identified and reviewed a random sample of 543 encounters for adults receiving care within a single Veterans Health Administration healthcare system and had a first fracture episode between 2010 and 2019. To determine if an encounter represented a true incident fracture, we performed chart abstraction and assessed the type of fracture and mechanism. We calculated the positive predictive value (PPV) for the overall algorithm and each component diagnosis code along with 95% confidence intervals. Inverse probabilities of selection sampling weights were used to reflect the underlying study population.

RESULTS

The algorithm had an initial PPV of 73.5% (confidence interval [CI] 69.5, 77.1), with low performance when weighted to reflect the full population (PPV 66.3% [CI 58.8, 73.1]). The modified algorithm was restricted to diagnosis codes with PPVs > 50% and outpatient codes were restricted to the first outpatient position, with the exception of one high performing code. The resulting unweighted PPV improved to 90.1% (CI 86.2, 93.0) and weighted PPV of 91.3% (CI 86.8, 94.4). A confirmation sample demonstrated verified performance with PPV of 87.3% (76.0, 93.7). PPVs by location of care (inpatient, emergency department and outpatient) remained greater than 85% in the modified algorithm.

CONCLUSIONS

The modified algorithm, which included primary billing codes for inpatient, outpatient, and emergency department visits, demonstrated excellent PPV for identification of fractures among a cohort of patients within the Veterans Health Administration system.

摘要

目的

验证一种算法,该算法使用国际疾病分类第 9 版(ICD-9)和第 10 版(ICD-10)的计费代码来识别患者住院、门诊和急诊就诊中的骨折。

方法

我们从 2010 年至 2019 年期间在一个退伍军人健康管理系统中接受治疗的成年人中随机抽取了 543 例就诊,其中首次发生骨折。为了确定就诊是否代表真正的骨折事件,我们进行了图表摘要并评估了骨折类型和机制。我们计算了总体算法和每个诊断代码组件的阳性预测值(PPV),并附有 95%置信区间。采用逆概率选择抽样权重来反映基础研究人群。

结果

该算法的初始 PPV 为 73.5%(置信区间 [CI] 69.5,77.1),加权后反映总体人群的表现不佳(PPV 为 66.3%[CI 58.8,73.1])。修改后的算法仅限于 PPV>50%的诊断代码,并且门诊代码仅限于第一个门诊位置,但有一个表现出色的代码除外。未加权的 PPV 提高到 90.1%(CI 86.2,93.0),加权的 PPV 为 91.3%(CI 86.8,94.4)。确认样本显示,验证后的 PPV 为 87.3%(76.0,93.7)。在修改后的算法中,门诊、急诊和门诊就诊的地点的 PPV 仍大于 85%。

结论

该算法包括住院、门诊和急诊就诊的主要计费代码,在退伍军人健康管理系统的患者队列中,该算法对骨折的识别具有很高的 PPV。

相似文献

1
Validation of an algorithm to identify fractures among patients within the Veterans Health Administration.
Pharmacoepidemiol Drug Saf. 2023 Nov;32(11):1290-1298. doi: 10.1002/pds.5662. Epub 2023 Jul 4.
3
Validation of anaphylaxis in the Food and Drug Administration's Mini-Sentinel.
Pharmacoepidemiol Drug Saf. 2013 Nov;22(11):1205-13. doi: 10.1002/pds.3505. Epub 2013 Sep 5.
4
7
Validation of Electronic Health Record-Based Algorithms to Identify Specialist Palliative Care Within the Department of Veterans Affairs.
J Pain Symptom Manage. 2023 Oct;66(4):e475-e483. doi: 10.1016/j.jpainsymman.2023.06.023. Epub 2023 Jun 25.
8
Chiari malformation Type I surgery in pediatric patients. Part 1: validation of an ICD-9-CM code search algorithm.
J Neurosurg Pediatr. 2016 May;17(5):519-24. doi: 10.3171/2015.10.PEDS15370. Epub 2016 Jan 22.
10
Development and Validation of the Veterans Affairs Eosinophilic Esophagitis Cohort.
Clin Gastroenterol Hepatol. 2023 Nov;21(12):3030-3040.e4. doi: 10.1016/j.cgh.2023.03.033. Epub 2023 Apr 7.

引用本文的文献

1
The Association of SGLT2i vs DPP4i on Fracture: A Cohort Study in Veterans with Diabetes.
Am J Med Open. 2025 May 25;14:100105. doi: 10.1016/j.ajmo.2025.100105. eCollection 2025 Dec.
2
Validation of Algorithms to Detect Acute and Disseminated Lyme Disease in U.S. Administrative Claims Data.
Open Forum Infect Dis. 2025 Feb 27;12(4):ofaf109. doi: 10.1093/ofid/ofaf109. eCollection 2025 Apr.
3
Parkinson's Disease Progression and Exposure to Contaminated Water at Camp Lejeune.
Mov Disord. 2024 Oct;39(10):1732-1739. doi: 10.1002/mds.29922. Epub 2024 Jul 11.

本文引用的文献

1
The Design and Validation of a New Algorithm to Identify Incident Fractures in Administrative Claims Data.
J Bone Miner Res. 2019 Oct;34(10):1798-1807. doi: 10.1002/jbmr.3807. Epub 2019 Aug 5.
2
The retrospective chart review: important methodological considerations.
J Educ Eval Health Prof. 2013 Nov 30;10:12. doi: 10.3352/jeehp.2013.10.12. eCollection 2013.
3
Which fractures are most attributable to osteoporosis?
J Clin Epidemiol. 2011 Jan;64(1):46-53. doi: 10.1016/j.jclinepi.2010.07.007.
4
Assessing comorbidity using claims data: an overview.
Med Care. 2002 Aug;40(8 Suppl):IV-26-35. doi: 10.1097/00005650-200208001-00004.
5
Using healthcare claims data for outcomes research and pharmacoeconomic analyses.
Pharmacoeconomics. 1999 Jul;16(1):1-8. doi: 10.2165/00019053-199916010-00001.
6
Identification of fractures from computerized Medicare files.
J Clin Epidemiol. 1992 Jul;45(7):703-14. doi: 10.1016/0895-4356(92)90047-q.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验