Procházka Pavel, Čechal Jan
CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czechia.
CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czechia; Institute of Physical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czechia.
Ultramicroscopy. 2023 Nov;253:113799. doi: 10.1016/j.ultramic.2023.113799. Epub 2023 Jun 20.
The design of metal-organic interfaces with atomic precision enables the fabrication of highly efficient devices with tailored functionality. The possibility of fast and reliable analysis of molecular stacking order at the interface is of crucial importance, as the interfacial stacking order of molecules directly influences the quality and functionality of fabricated organic-based devices. Dark-field (DF) imaging using Low-Energy Electron Microscopy (LEEM) allows the visualization of areas with a specific structure or symmetry. However, distinguishing layers with different stacking orders featuring the same diffraction patterns becomes more complicated. Here we show that the top layer shift in organic molecular bilayers induces measurable differences in spot intensities of respective diffraction patterns that can be visualized in DF images. Scanning Tunneling Microscopy (STM) imaging of molecular bilayers allowed us to measure the shift directly and compare it with the diffraction data. We also provide a conceptual diffraction model based on the electron path differences, which qualitatively explains the observed phenomenon.
具有原子精度的金属-有机界面设计能够制造出具有定制功能的高效器件。对界面处分子堆积顺序进行快速可靠分析的可能性至关重要,因为分子的界面堆积顺序直接影响所制造的有机基器件的质量和功能。使用低能电子显微镜(LEEM)的暗场(DF)成像可以可视化具有特定结构或对称性的区域。然而,区分具有相同衍射图案但堆积顺序不同的层变得更加复杂。在这里,我们表明有机分子双层中的顶层位移会在各自衍射图案的斑点强度上引起可测量的差异,这些差异可以在DF图像中可视化。分子双层的扫描隧道显微镜(STM)成像使我们能够直接测量位移并将其与衍射数据进行比较。我们还提供了一个基于电子路径差异的概念性衍射模型,该模型定性地解释了观察到的现象。