Technical University of Munich , Department of Physics, 85748 Garching, Germany.
Diamond Light Source , Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom.
ACS Nano. 2017 Sep 26;11(9):9151-9161. doi: 10.1021/acsnano.7b04022. Epub 2017 Sep 5.
Atomically thin hexagonal boron nitride (h-BN) layers on metallic supports represent a promising platform for the selective adsorption of atoms, clusters, and molecular nanostructures. Specifically, scanning tunneling microscopy (STM) studies revealed an electronic corrugation of h-BN/Cu(111), guiding the self-assembly of molecules and their energy level alignment. A detailed characterization of the h-BN/Cu(111) interface including the spacing between the h-BN sheet and its support-elusive to STM measurements-is crucial to rationalize the interfacial interactions within these systems. To this end, we employ complementary techniques including high-resolution noncontact atomic force microscopy, STM, low-energy electron diffraction, X-ray photoelectron spectroscopy, the X-ray standing wave method, and density functional theory. Our multimethod study yields a comprehensive, quantitative structure determination including the adsorption height and the corrugation of the sp bonded h-BN layer on Cu(111). Based on the atomic contrast in atomic force microscopy measurements, we derive a measurable-hitherto unrecognized-geometric corrugation of the h-BN monolayer. This experimental approach allows us to spatially resolve minute height variations in low-dimensional nanostructures, thus providing a benchmark for theoretical modeling. Regarding potential applications, e.g., as a template or catalytically active support, the recognition of h-BN on Cu(111) as a weakly bonded and moderately corrugated overlayer is highly relevant.
原子级薄的六方氮化硼(h-BN)层在金属衬底上代表了一种用于选择性吸附原子、团簇和分子纳米结构的有前途的平台。具体来说,扫描隧道显微镜(STM)研究揭示了 h-BN/Cu(111)的电子波纹,指导了分子的自组装及其能级对准。对 h-BN/Cu(111)界面的详细表征,包括 h-BN 片与其支撑体之间的间距-对 STM 测量来说是难以捉摸的-对于合理化这些系统中的界面相互作用至关重要。为此,我们采用了互补技术,包括高分辨率非接触原子力显微镜、STM、低能电子衍射、X 射线光电子能谱、X 射线驻波法和密度泛函理论。我们的多方法研究提供了包括吸附高度和 sp 键合 h-BN 层在 Cu(111)上的波纹的综合、定量结构确定。基于原子力显微镜测量中的原子对比度,我们推导出了迄今为止尚未被识别的 h-BN 单层的可测量-几何波纹。这种实验方法使我们能够在低维纳米结构中空间分辨微小的高度变化,从而为理论建模提供了基准。关于潜在的应用,例如作为模板或催化活性支撑,h-BN 在 Cu(111)上作为弱键合和适度波纹的覆盖层的识别具有重要意义。