Suppr超能文献

一种基于自适应纳米特征提取与多尺度深度融合的SiN陶瓷轴承滚子表面微裂纹三维形态耦合重建方法。

A Coupled 3d Morphological Reconstruction Approach for Surface Microcrack in Si n Ceramic Bearing Roller Based on Adaptive Nano Feature Extraction & Multiscale Depth Fusion.

作者信息

Liao Dahai, Hu Kun, Li Bin, Zheng Qi, Hu Weiwen, Wu Nanxing

机构信息

School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi, 333403, China.

Laboratory of Ceramic Material Processing Technology Engineering, Jiangxi province, Jingdezhen, Jiangxi, 333403, China.

出版信息

Small Methods. 2023 Oct;7(10):e2300396. doi: 10.1002/smtd.202300396. Epub 2023 Jun 27.

Abstract

To extract the fuzzy contour features, tiny depth features of surface microcracks in the Si N ceramic bearings roller. An adaptive nano feature extraction and multiscale deep fusion coupling method is proposed, to sufficiently reconstruct the three-dimensional morphology characteristics of surface microcracks. Construct an adaptive nano feature extraction method, form the surface microcrack image scale space and the Gaussian difference pyramid function equation, realize the detection and matching of global feature points. The sparse point cloud is obtained. Through polar-line correction, depth estimation, and fusion of feature points on the surface microcracks image, a multiscale depth fusion matching cost pixel function is established to realize a dense point cloud reconstruction of surface microcracks. The reconstruction results show that the highest value of the local convex surface reconstructed by the dense point cloud reaches 1183 nm, and the lowest local concave surface is accurate to 296 nm. Compared with the measurement results of the confocal platform, the relative error of the reconstruction result is 24.6%. The overall feature-matching rate of the reconstruction reaches 93.3%. It provides a theoretical basis for the study of surface microcrack propagation mechanism and the prediction of bearing life.

摘要

为提取SiN陶瓷轴承滚子表面微裂纹的模糊轮廓特征和微小深度特征,提出一种自适应纳米特征提取与多尺度深度融合耦合方法,以充分重构表面微裂纹的三维形态特征。构建自适应纳米特征提取方法,形成表面微裂纹图像尺度空间和高斯差分金字塔函数方程,实现全局特征点的检测与匹配,得到稀疏点云。通过对表面微裂纹图像进行极线校正、深度估计以及特征点融合,建立多尺度深度融合匹配代价像素函数,实现表面微裂纹的密集点云重构。重构结果表明,密集点云重构的局部凸面最高值达到1183nm,局部凹面最低值精确到296nm。与共焦平台测量结果相比,重构结果的相对误差为24.6%。重构的整体特征匹配率达到93.3%。为表面微裂纹扩展机理研究及轴承寿命预测提供了理论依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验