Merkel Manuel, Noll Philipp, Lilge Lars, Hausmann Rudolf, Henkel Marius
Department of Bioprocess Engineering (150k), University of Hohenheim, Stuttgart, Germany.
Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
Biotechnol J. 2023 Oct;18(10):e2200554. doi: 10.1002/biot.202200554. Epub 2023 Jul 9.
3D-printing increased in significance for biotechnological research as new applications like lab-on-a-chip systems, cell culture devices or 3D-printed foods were uncovered. Besides mammalian cell culture, only few of those applications focus on the cultivation of microorganisms and none of these make use of the advantages of perfusion systems. One example for applying 3D-printing for bioreactor development is the microbial utilization of alternative substrates derived from lignocellulose, where dilute carbon concentrations and harmful substances present a major challenge. Furthermore, quickly manufactured and affordable 3D-printed bioreactors can accelerate early development phases through parallelization. In this work, a novel perfusion bioreactor system consisting of parts manufactured by fused filament fabrication (FFF) is presented and evaluated. Hydrophilic membranes are used for cell retention to allow the application of dilute substrates. Oxygen supply is provided by membrane diffusion via hydrophobic polytetrafluoroethylene membranes. An exemplary cultivation of Corynebacterium glutamicum ATCC 13032 supports the theoretical design by achieving competitive biomass concentrations of 18.4 g L after 52 h. As a proof-of-concept for cultivation of microorganisms in perfusion mode, the described bioreactor system has application potential for bioconversion of multi-component substrate-streams in a lignocellulose-based bioeconomy, for in-situ product removal or design considerations of future applications for tissue cultures. Furthermore, this work provides a template-based toolbox with instructions for creating reference systems in different application scenarios or tailor-made bioreactor systems.
随着诸如芯片实验室系统、细胞培养装置或3D打印食品等新应用的发现,3D打印在生物技术研究中的重要性日益增加。除了哺乳动物细胞培养外,这些应用中只有少数关注微生物培养,而且没有一个利用灌注系统的优势。将3D打印应用于生物反应器开发的一个例子是利用木质纤维素衍生的替代底物进行微生物利用,其中稀释的碳浓度和有害物质构成了重大挑战。此外,快速制造且价格合理的3D打印生物反应器可以通过并行化加速早期开发阶段。在这项工作中,提出并评估了一种新型灌注生物反应器系统,该系统由通过熔融丝状制造(FFF)制造的部件组成。亲水性膜用于细胞保留,以允许应用稀释底物。通过疏水性聚四氟乙烯膜的膜扩散提供氧气供应。谷氨酸棒杆菌ATCC 13032的示例性培养通过在52小时后达到18.4 g L的有竞争力的生物量浓度来支持理论设计。作为在灌注模式下培养微生物的概念验证,所描述的生物反应器系统在基于木质纤维素的生物经济中对多组分底物流的生物转化、原位产物去除或未来组织培养应用的设计考虑方面具有应用潜力。此外,这项工作提供了一个基于模板的工具箱,其中包含在不同应用场景中创建参考系统或定制生物反应器系统的说明。