School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Biosensors (Basel). 2023 May 23;13(6):571. doi: 10.3390/bios13060571.
Histamine receptor 2 (HR) blockers are used to treat peptic ulcers and gastric reflux. Chlorquinaldol and chloroxine, which contain an 8-hydroxyquinoline (8HQ) core, have recently been identified as blocking HR. To gain insight into the mode of action of 8HQ-based blockers, here, we leverage an HR-based sensor in yeast to evaluate the role of key residues in the HR active site on histamine and 8HQ-based blocker binding. We find that the HR mutations D98A, F254A, Y182A, and Y250A render the receptor inactive in the presence of histamine, while HR:D186A and HR:T190A retain residual activity. Based on molecular docking studies, this outcome correlates with the ability of the pharmacologically relevant histamine tautomers to interact with D98 via the charged amine. Docking studies also suggest that, unlike established HR blockers that interact with both ends of the HR binding site, 8HQ-based blockers interact with only one end, either the end framed by D98/Y250 or T190/D186. Experimentally, we find that chlorquinaldol and chloroxine still inactivate HR:D186A by shifting their engagement from D98 to Y250 in the case of chlorquinaldol and D186 to Y182 in the case of chloroxine. Importantly, the tyrosine interactions are supported by the intramolecular hydrogen bonding of the 8HQ-based blockers. The insight gained in this work will aid in the development of improved HR therapeutics. More generally, this work demonstrates that Gprotein-coupled receptor (GPCR)-based sensors in yeast can help elucidate the mode of action of novel ligands for GPCRs, a family of receptors that bind 30% of FDA therapeutics.
组胺受体 2(HR)阻滞剂用于治疗消化性溃疡和胃食管反流。最近发现含有 8-羟基喹啉(8HQ)核心的氯喹那多和氯氧喹能够阻断 HR。为了深入了解基于 8HQ 的阻滞剂的作用机制,我们利用酵母中基于 HR 的传感器来评估 HR 活性位点中的关键残基在组胺和基于 8HQ 的阻滞剂结合中的作用。我们发现 HR 突变 D98A、F254A、Y182A 和 Y250A 使受体在存在组胺的情况下失活,而 HR:D186A 和 HR:T190A 保留残余活性。基于分子对接研究,这一结果与药理学上相关的组胺互变异构体与 D98 通过带电胺相互作用的能力相关。对接研究还表明,与同时与 HR 结合位点两端相互作用的已建立的 HR 阻滞剂不同,基于 8HQ 的阻滞剂仅与 HR 结合位点的一端相互作用,要么是由 D98/Y250 框定的一端,要么是由 T190/D186 框定的一端。实验发现,氯喹那多和氯氧喹仍然通过将其与 HR:D186A 的结合从 D98 转移到 Y250(氯喹那多的情况)或 D186 转移到 Y182(氯氧喹的情况)来使 HR:D186A 失活。重要的是,酪氨酸相互作用得到了基于 8HQ 的阻滞剂的分子内氢键的支持。这项工作中获得的见解将有助于开发改进的 HR 治疗药物。更广泛地说,这项工作表明酵母中的 G 蛋白偶联受体(GPCR)基传感器可以帮助阐明新型 GPCR 配体的作用机制,GPCR 是结合 FDA 治疗药物 30%的受体家族。