Suppr超能文献

使用非稳态三维单通道模型在各种运行条件下最小化电化学氢气压缩机的特定区域电阻

Minimizing Area-Specific Resistance of Electrochemical Hydrogen Compressor under Various Operating Conditions Using Unsteady 3D Single-Channel Model.

作者信息

Gong Myungkeun, Jin Changhyun, Na Youngseung

机构信息

Department of Mechanical and Information Engineering, University of Seoul, Seoul 02504, Republic of Korea.

出版信息

Membranes (Basel). 2023 May 26;13(6):555. doi: 10.3390/membranes13060555.

Abstract

Extensive research has been conducted over the past few decades on carbon-free hydrogen energy. Hydrogen, being an abundant energy source, requires high-pressure compression for storage and transportation due to its low volumetric density. Mechanical and electrochemical compression are two common methods used to compress hydrogen under high pressure. Mechanical compressors can potentially cause contamination due to the lubricating oil when compressing hydrogen, whereas electrochemical hydrogen compressors (EHCs) can produce high-purity, high-pressure hydrogen without any moving parts. A study was conducted using a 3D single-channel EHC model focusing on the water content and area-specific resistance of the membrane under various temperature, relative humidity, and gas diffusion layer (GDL) porosity conditions. Numerical analysis demonstrated that the higher the operating temperature, the higher the water content in the membrane. This is because the saturation vapor pressure increases with higher temperatures. When dry hydrogen is supplied to a sufficiently humidified membrane, the actual water vapor pressure decreases, leading to an increase in the membrane's area-specific resistance. Furthermore, with a low GDL porosity, the viscous resistance increases, hindering the smooth supply of humidified hydrogen to the membrane. Through a transient analysis of an EHC, favorable operating conditions for rapidly hydrating membranes were identified.

摘要

在过去几十年里,人们对无碳氢能进行了广泛的研究。氢气作为一种丰富的能源,由于其体积密度低,需要高压压缩才能储存和运输。机械压缩和电化学压缩是高压压缩氢气的两种常用方法。机械压缩机在压缩氢气时可能会因润滑油而造成污染,而电化学氢气压缩机(EHC)则可以在没有任何运动部件的情况下产生高纯度、高压氢气。一项研究使用了三维单通道EHC模型,重点研究了在各种温度、相对湿度和气体扩散层(GDL)孔隙率条件下膜的含水量和面积比电阻。数值分析表明,操作温度越高,膜中的含水量越高。这是因为饱和蒸气压随温度升高而增加。当向充分加湿的膜供应干燥氢气时,实际水蒸气压力降低,导致膜的面积比电阻增加。此外,GDL孔隙率较低时,粘性阻力增加,阻碍了加湿氢气向膜的顺畅供应。通过对EHC的瞬态分析,确定了膜快速水合的有利操作条件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4e6/10304108/28020423bbe4/membranes-13-00555-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验