Haq Wadood, Zrenner Eberhart, Ueffing Marius, Paquet-Durand François
Centre for Ophthalmology, Institute for Ophthalmic Research, Elfriede-Aulhorn-Straße 7, 72076 Tuebingen, Germany.
Bioengineering (Basel). 2023 Jun 15;10(6):725. doi: 10.3390/bioengineering10060725.
The electroretinogram (ERG) is an essential diagnostic tool for visual function, both in clinical and research settings. Here, we establish an advanced in vitro approach to assess cell-type-specific ERG signal components.
Retinal explant cultures, maintained under entirely controlled conditions, were derived from wild-type mice and and cone-degeneration mouse models. Local micro-ERG (µERG) and simultaneous ganglion cell (GC) recordings were obtained from the retinal explants using multi-electrode arrays. Band-pass filtering was employed to distinguish photoreceptor, bipolar cell, amacrine cell (AC), and GC responses.
Scotopic and photopic stimulation discriminated between rod and cone responses in wild-type and mutant retina. The 25 kHz sampling rate allowed the visualization of oscillatory potentials (OPs) in extraordinary detail, revealing temporal correlations between OPs and GC responses. Pharmacological isolation of different retinal circuits found that OPs are generated by inner retinal AC electrical synapses. Importantly, this AC activity helped synchronise GC activity.
Our µERG protocol simultaneously records the light-dependent activities of the first-, second-, and third-order neurons within the native neuronal circuitry, providing unprecedented insights into retinal physiology and pathophysiology. This method now also enables complete in vitro retinal function testing of therapeutic interventions, providing critical guidance for later in vivo investigations.
视网膜电图(ERG)是临床和研究环境中视觉功能的重要诊断工具。在此,我们建立了一种先进的体外方法来评估细胞类型特异性的ERG信号成分。
在完全可控条件下维持的视网膜外植体培养物取自野生型小鼠和视锥细胞退化小鼠模型。使用多电极阵列从视网膜外植体获得局部微ERG(µERG)和同时进行的神经节细胞(GC)记录。采用带通滤波来区分光感受器、双极细胞、无长突细胞(AC)和GC反应。
暗视和明视刺激区分了野生型和突变型视网膜中的视杆和视锥反应。25 kHz的采样率能够极其详细地观察到振荡电位(OPs),揭示了OPs与GC反应之间的时间相关性。对不同视网膜回路的药理学分离发现,OPs是由视网膜内AC电突触产生的。重要的是,这种AC活动有助于同步GC活动。
我们的µERG方案同时记录了天然神经回路中一级、二级和三级神经元的光依赖性活动,为视网膜生理学和病理生理学提供了前所未有的见解。该方法现在还能够对治疗干预进行完整的体外视网膜功能测试,为后续的体内研究提供关键指导。