Davido Benjamin, Lemarie Benoit, Gault Elyanne, Dumoulin Jennifer, D'anglejan Emma, Beaune Sebastien, De Truchis Pierre
Maladies Infectieuses, Hôpital Raymond Poincaré, Assistance Publique des Hôpitaux de Paris (AP-HP), 92380 Garches, France.
UMR1173, Université Versailles St-Quentin, Université Paris-Saclay, 78180 Montigny-Le-Bretonneux, France.
Diagnostics (Basel). 2023 Jun 19;13(12):2115. doi: 10.3390/diagnostics13122115.
Prior to the emergence of COVID-19, when influenza was the predominant cause of viral respiratory tract infections (VRTIs), this study aimed to analyze the distinct biological abnormalities associated with influenza in outpatient settings.
A multicenter retrospective study was conducted among outpatients, with the majority seeking consultation at the emergency department, who tested positive for VRTIs using RT-PCR between 2016 and 2018. Patient characteristics were compared between influenza (A and B types) and non-influenza viruses, and predictors of influenza were identified using two different models focusing on absolute eosinopenia (0/mm) and lymphocyte count <800/mm.
Among 590 VRTIs, 116 (19.7%) were identified as outpatients, including 88 cases of influenza. Multivariable logistic regression analysis revealed the following predictors of influenza: in the first model, winter season (adjusted odds ratio [aOR] 7.1, 95% confidence interval [CI] 1.12-45.08) and absolute eosinopenia (aOR 6.16, 95% CI 1.14-33.24); in the second model, winter season (aOR 9.08, 95% CI 1.49-55.40) and lymphocyte count <800/mm (aOR 7.37, 95% CI 1.86-29.20). Absolute eosinopenia exhibited the highest specificity and positive predictive value (92% and 92.3%, respectively).
During the winter season, specific biological abnormalities can aid physicians in identifying influenza cases and guide the appropriate use of antiviral therapy when rapid molecular tests are not readily available.
在新型冠状病毒肺炎(COVID-19)出现之前,流感是病毒性呼吸道感染(VRTIs)的主要病因,本研究旨在分析门诊环境中与流感相关的独特生物学异常。
对门诊患者进行了一项多中心回顾性研究,大多数患者在急诊科就诊,他们在2016年至2018年间使用逆转录聚合酶链反应(RT-PCR)检测VRTIs呈阳性。比较了流感(甲型和乙型)和非流感病毒患者的特征,并使用两种不同模型确定流感的预测因素,这两种模型分别侧重于绝对嗜酸性粒细胞减少(0/立方毫米)和淋巴细胞计数<800/立方毫米。
在590例VRTIs中,116例(19.7%)被确定为门诊患者,其中包括88例流感病例。多变量逻辑回归分析揭示了以下流感预测因素:在第一个模型中,冬季(调整后的优势比[aOR]7.1,95%置信区间[CI]1.12 - 45.08)和绝对嗜酸性粒细胞减少(aOR 6.16,95%CI 1.14 - 33.24);在第二个模型中,冬季(aOR 9.08,95%CI 1.49 - 55.40)和淋巴细胞计数<800/立方毫米(aOR 7.37,95%CI 1.86 - 29.20)。绝对嗜酸性粒细胞减少表现出最高的特异性和阳性预测值(分别为92%和92.3%)。
在冬季,特定的生物学异常可帮助医生识别流感病例,并在无法快速获得分子检测结果时指导抗病毒治疗的合理使用。