Suppr超能文献

基于坐标的蛋白质二级结构元素分类的数学和机器学习方法。

Mathematical and Machine Learning Approaches for Classification of Protein Secondary Structure Elements from Coordinates.

机构信息

Department of Computer Science, Tennessee State University, Nashville, TN 37209, USA.

Department of Mechanical Engineering, Middle East Technical University, Ankara 06800, Türkiye.

出版信息

Biomolecules. 2023 May 31;13(6):923. doi: 10.3390/biom13060923.

Abstract

Determining Secondary Structure Elements (SSEs) for any protein is crucial as an intermediate step for experimental tertiary structure determination. SSEs are identified using popular tools such as DSSP and STRIDE. These tools use atomic information to locate hydrogen bonds to identify SSEs. When some spatial atomic details are missing, locating SSEs becomes a hinder. To address the problem, when some atomic information is missing, three approaches for classifying SSE types using Cα atoms in protein chains were developed: (1) a mathematical approach, (2) a deep learning approach, and (3) an ensemble of five machine learning models. The proposed methods were compared against each other and with a state-of-the-art approach, PCASSO.

摘要

确定任何蛋白质的二级结构元件 (SSEs) 是实验确定三级结构的中间步骤,至关重要。SSEs 使用 DSSP 和 STRIDE 等流行工具来识别。这些工具使用原子信息来定位氢键以识别 SSEs。当某些空间原子细节缺失时,定位 SSEs 就成了障碍。为了解决这个问题,当某些原子信息缺失时,开发了三种使用蛋白质链中的 Cα 原子对 SSE 类型进行分类的方法:(1) 数学方法,(2) 深度学习方法,(3) 五个机器学习模型的集成。将提出的方法相互比较,并与最先进的方法 PCASSO 进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f919/10296594/eeb425a612eb/biomolecules-13-00923-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验